language-icon Old Web
English
Sign In

Kinesin

A kinesin is a protein belonging to a class of motor proteins found in eukaryotic cells.Kinesins were discovered as MT-based anterograde intracellular transport motors. The founding member of this superfamily, kinesin-1, was isolated as a heterotetrameric fast axonal organelle transport motor consisting of 2 identical motor subunits (KHC) and 2 'light chains' (KLC) via microtubule affinity purification from neuronal cell extracts. Subsequently, a different, heterotrimeric plus-end-directed MT-based motor named kinesin-2, consisting of 2 distinct KHC-related motor subunits and an accessory 'KAP' subunit, was purified from echinoderm egg/embryo extracts and is best known for its role in transporting protein complexes (IFT particles) along axonemes during cilium biogenesis. Molecular genetic and genomic approaches have led to the recognition that the kinesins form a diverse superfamily of motors that are responsible for multiple intracellular motility events in eukaryotic cells. For example, the genomes of mammals encode more than 40 kinesin proteins, organized into at least 14 families named kinesin-1 through kinesin-14.Members of the kinesin superfamily vary in shape but the prototypical kinesin-1 is a heterotetramer whose motor subunits (heavy chains or KHCs) form a protein dimer (molecule pair) that binds two light chains (KLCs).In the cell, small molecules, such as gases and glucose, diffuse to where they are needed. Large molecules synthesised in the cell body, intracellular components such as vesicles and organelles such as mitochondria are too large (and the cytosol too crowded) to be able to diffuse to their destinations. Motor proteins fulfill the role of transporting large cargo about the cell to their required destinations. Kinesins are motor proteins that transport such cargo by walking unidirectionally along microtubule tracks hydrolysing one molecule of adenosine triphosphate (ATP) at each step. It was thought that ATP hydrolysis powered each step, the energy released propelling the head forwards to the next binding site. However, it has been proposed that the head diffuses forward and the force of binding to the microtubule is what pulls the cargo along. In addition viruses, HIV for example, exploit kinesins to allow virus particle shuttling after assembly.Motor proteins travel in a specific direction along a microtubule. Microtubules are polar; meaning, the heads only binds to the microtubule in one orientation, while ATP binding gives each step its direction through a process known as neck linker zippering.Kinesin accomplishes transport by 'walking' along a microtubule. Two mechanisms have been proposed to account for this movement. A number of theoretical models of the molecular motor protein kinesin have been proposed. Many challenges are encountered in theoretical investigations given the remaining uncertainties about the roles of protein structures, the precise way energy from ATP is transformed into mechanical work, and the roles played by thermal fluctuations. This is a rather active area of research. There is a need especially for approaches which better make a link with the molecular architecture of the protein and data obtained from experimental investigations.In recent years, it has been found that microtubule-based molecular motors (including a number of kinesins) have a role in mitosis (cell division). Kinesins are important for proper spindle length and are involved in sliding microtubules apart within the spindle during prometaphase and metaphase, as well as depolymerizing microtubule minus ends at centrosomes during anaphase. Specifically, Kinesin-5 family proteins act within the spindle to slide microtubules apart, while the Kinesin 13 family act to depolymerize microtubules.Human kinesin superfamily members include the following proteins, which in the standardized nomenclature developed by the community of kinesin researchers, are organized into 14 families named kinesin-1 through kinesin-14:

[ "Microtubule", "Bipolar spindle formation", "KINESIN-BINDING PROTEIN", "Kinesin light chain 1", "Syntabulin", "Dendritic transport" ]
Parent Topic
Child Topic
    No Parent Topic