language-icon Old Web
English
Sign In

Cofinality

In mathematics, especially in order theory, the cofinality cf(A) of a partially ordered set A is the least of the cardinalities of the cofinal subsets of A. In mathematics, especially in order theory, the cofinality cf(A) of a partially ordered set A is the least of the cardinalities of the cofinal subsets of A. This definition of cofinality relies on the axiom of choice, as it uses the fact that every non-empty set of cardinal numbers has a least member. The cofinality of a partially ordered set A can alternatively be defined as the least ordinal x such that there is a function from x to A with cofinal image. This second definition makes sense without the axiom of choice. If the axiom of choice is assumed, as will be the case in the rest of this article, then the two definitions are equivalent. Cofinality can be similarly defined for a directed set and is used to generalize the notion of a subsequence in a net. If A admits a totally ordered cofinal subset, then we can find a subset B which is well-ordered and cofinal in A. Any subset of B is also well-ordered. If two cofinal subsets of B have minimal cardinality (i.e. their cardinality is the cofinality of B), then they are order isomorphic to each other. The cofinality of an ordinal α is the smallest ordinal δ which is the order type of a cofinal subset of α. The cofinality of a set of ordinals or any other well-ordered set is the cofinality of the order type of that set. Thus for a limit ordinal α, there exists a δ-indexed strictly increasing sequence with limit α. For example, the cofinality of ω² is ω, because the sequence ω·m (where m ranges over the natural numbers) tends to ω²; but, more generally, any countable limit ordinal has cofinality ω. An uncountable limit ordinal may have either cofinality ω as does ωω or an uncountable cofinality. The cofinality of 0 is 0. The cofinality of any successor ordinal is 1. The cofinality of any nonzero limit ordinal is an infinite regular cardinal. A regular ordinal is an ordinal which is equal to its cofinality. A singular ordinal is any ordinal which is not regular. Every regular ordinal is the initial ordinal of a cardinal. Any limit of regular ordinals is a limit of initial ordinals and thus is also initial but need not be regular. Assuming the axiom of choice, ω α + 1 {displaystyle omega _{alpha +1}} is regular for each α. In this case, the ordinals 0, 1, ω {displaystyle omega } , ω 1 {displaystyle omega _{1}} , and ω 2 {displaystyle omega _{2}} are regular, whereas 2, 3, ω ω {displaystyle omega _{omega }} , and ωω·2 are initial ordinals which are not regular.

[ "Countable set", "Cardinal number", "Uncountable set", "Singular cardinals hypothesis", "Limit cardinal" ]
Parent Topic
Child Topic
    No Parent Topic