language-icon Old Web
English
Sign In

Alcohol dehydrogenase

Alcohol dehydrogenases (ADH) (EC 1.1.1.1) are a group of dehydrogenase enzymes that occur in many organisms and facilitate the interconversion between alcohols and aldehydes or ketones with the reduction of nicotinamide adenine dinucleotide (NAD+) to NADH. In humans and many other animals, they serve to break down alcohols that otherwise are toxic, and they also participate in generation of useful aldehyde, ketone, or alcohol groups during biosynthesis of various metabolites. In yeast, plants, and many bacteria, some alcohol dehydrogenases catalyze the opposite reaction as part of fermentation to ensure a constant supply of NAD+. Genetic evidence from comparisons of multiple organisms showed that a glutathione-dependent formaldehyde dehydrogenase, identical to a class III alcohol dehydrogenase (ADH-3/ADH5), is presumed to be the ancestral enzyme for the entire ADH family. Early on in evolution, an effective method for eliminating both endogenous and exogenous formaldehyde was important and this capacity has conserved the ancestral ADH-3 through time. Gene duplication of ADH-3, followed by series of mutations, led to the evolution of other ADHs. The ability to produce ethanol from sugar (which is the basis of how alcoholic beverages are made) is believed to have initially evolved in yeast. Though this feature is not adaptive from an energy point of view, by making alcohol in such high concentrations so that they would be toxic to other organisms, yeast cells could effectively eliminate their competition. Since rotting fruit can contain more than 4% of ethanol, animals eating the fruit needed a system to metabolize exogenous ethanol. This was thought to explain the conservation of ethanol active ADH in species other than yeast, though ADH-3 is now known to also have a major role in nitric oxide signaling. In humans, sequencing of the ADH1B gene (responsible for production of an alcohol dehydrogenase polypeptide) shows several functional variants. In one, there is a SNP (single nucleotide polymorphism) that leads to either a Histidine or an Arginine residue at position 47 in the mature polypeptide. In the Histidine variant, the enzyme is much more effective at the aforementioned conversion. The enzyme responsible for the conversion of acetaldehyde to acetate, however, remains unaffected, which leads to differential rates of substrate catalysis and causes a buildup of toxic acetaldehyde, causing cell damage. This provides some protection against excessive alcohol consumption and alcohol dependence (alcoholism). Various haplotypes arising from this mutation are more concentrated in regions near Eastern China, a region also known for its low alcohol tolerance and dependence. A study was conducted in order to find a correlation between allelic distribution and alcoholism, and the results suggest that the allelic distribution arose along with rice cultivation in the region between 12,000 and 6,000 years ago. In regions where rice was cultivated, rice was also fermented into ethanol. The results of increased alcohol availability led to alcoholism and abuse by those able to acquire it, resulting in lower reproductive fitness. Those with the variant allele have little tolerance for alcohol, thus lowering chance of dependence and abuse. The hypothesis posits that those individuals with the Histidine variant enzyme were sensitive enough to the effects of alcohol that differential reproductive success arose and the corresponding alleles were passed through the generations. Classical Darwinian evolution would act to select against the detrimental form of the enzyme (Arg variant) because of the lowered reproductive success of individuals carrying the allele. The result would be a higher frequency of the allele responsible for the His-variant enzyme in regions that had been under selective pressure the longest. The distribution and frequency of the His variant follows the spread of rice cultivation to inland regions of Asia, with higher frequencies of the His variant in regions that have cultivated rice the longest. The geographic distribution of the alleles seems to therefore be a result of natural selection against individuals with lower reproductive success, namely, those who carried the Arg variant allele and were more susceptible to alcoholism. The first-ever isolated alcohol dehydrogenase (ADH) was purified in 1937 from Saccharomyces cerevisiae (brewer's yeast). Many aspects of the catalytic mechanism for the horse liver ADH enzyme were investigated by Hugo Theorell and coworkers. ADH was also one of the first oligomeric enzymes that had its amino acid sequence and three-dimensional structure determined. In early 1960, it was discovered in fruit flies of the genus Drosophila.

[ "Gene", "Enzyme", "Ethanol", "Alcohol", "ADH - Alcohol dehydrogenase", "adh1 gene", "Benzyl alcohol dehydrogenase", "Pyruvate decarboxylase", "Alcohol Dehydrogenase 1C" ]
Parent Topic
Child Topic
    No Parent Topic