language-icon Old Web
English
Sign In

Wave function

A wave function in quantum physics is a mathematical description of the quantum state of an isolated quantum system. The wave function is a complex-valued probability amplitude, and the probabilities for the possible results of measurements made on the system can be derived from it. The most common symbols for a wave function are the Greek letters ψ or Ψ (lower-case and capital psi, respectively). A wave function in quantum physics is a mathematical description of the quantum state of an isolated quantum system. The wave function is a complex-valued probability amplitude, and the probabilities for the possible results of measurements made on the system can be derived from it. The most common symbols for a wave function are the Greek letters ψ or Ψ (lower-case and capital psi, respectively). The wave function is a function of the degrees of freedom corresponding to some maximal set of commuting observables. Once such a representation is chosen, the wave function can be derived from the quantum state. For a given system, the choice of which commuting degrees of freedom to use is not unique, and correspondingly the domain of the wave function is also not unique. For instance, it may be taken to be a function of all the position coordinates of the particles over position space, or the momenta of all the particles over momentum space; the two are related by a Fourier transform. Some particles, like electrons and photons, have nonzero spin, and the wave function for such particles includes spin as an intrinsic, discrete degree of freedom; other discrete variables can also be included, such as isospin. When a system has internal degrees of freedom, the wave function at each point in the continuous degrees of freedom (e.g., a point in space) assigns a complex number for each possible value of the discrete degrees of freedom (e.g., z-component of spin) – these values are often displayed in a column matrix (e.g., a 2 × 1 column vector for a non-relativistic electron with spin ​1⁄2). According to the superposition principle of quantum mechanics, wave functions can be added together and multiplied by complex numbers to form new wave functions and form a Hilbert space. The inner product between two wave functions is a measure of the overlap between the corresponding physical states, and is used in the foundational probabilistic interpretation of quantum mechanics, the Born rule, relating transition probabilities to inner products. The Schrödinger equation determines how wave functions evolve over time, and a wave function behaves qualitatively like other waves, such as water waves or waves on a string, because the Schrödinger equation is mathematically a type of wave equation. This explains the name 'wave function', and gives rise to wave–particle duality. However, the wave function in quantum mechanics describes a kind of physical phenomenon, still open to different interpretations, which fundamentally differs from that of classic mechanical waves. In Born's statistical interpretation in non-relativistic quantum mechanics, the squared modulus of the wave function, |ψ|2, is a real number interpreted as the probability density of measuring a particle's being detected at a given place – or having a given momentum – at a given time, and possibly having definite values for discrete degrees of freedom. The integral of this quantity, over all the system's degrees of freedom, must be 1 in accordance with the probability interpretation. This general requirement that a wave function must satisfy is called the normalization condition. Since the wave function is complex valued, only its relative phase and relative magnitude can be measured—its value does not, in isolation, tell anything about the magnitudes or directions of measurable observables; one has to apply quantum operators, whose eigenvalues correspond to sets of possible results of measurements, to the wave function ψ and calculate the statistical distributions for measurable quantities. In 1905, Einstein postulated the proportionality between the frequency f {displaystyle f} of a photon and its energy E {displaystyle E} , E = h f {displaystyle E=hf} , and in 1916 the corresponding relation between photon's momentum p {displaystyle p} and wavelength λ {displaystyle lambda } , λ = h p {displaystyle lambda ={dfrac {h}{p}}} , where h {displaystyle h} is the Planck constant. In 1923, De Broglie was the first to suggest that the relation λ = h p {displaystyle lambda ={frac {h}{p}}} , now called the De Broglie relation, holds for massive particles, the chief clue being Lorentz invariance, and this can be viewed as the starting point for the modern development of quantum mechanics. The equations represent wave–particle duality for both massless and massive particles. In the 1920s and 1930s, quantum mechanics was developed using calculus and linear algebra. Those who used the techniques of calculus included Louis de Broglie, Erwin Schrödinger, and others, developing 'wave mechanics'. Those who applied the methods of linear algebra included Werner Heisenberg, Max Born, and others, developing 'matrix mechanics'. Schrödinger subsequently showed that the two approaches were equivalent. In 1926, Schrödinger published the famous wave equation now named after him, the Schrödinger equation. This equation was based on classical conservation of energy using quantum operators and the de Broglie relations, and the solutions of the equation are the wave functions for the quantum system. However, no one was clear on how to interpret it. At first, Schrödinger and others thought that wave functions represent particles that are spread out with most of the particle being where the wave function is large. This was shown to be incompatible with the elastic scattering of a wave packet (representing a particle) off a target; it spreads out in all directions. While a scattered particle may scatter in any direction, it does not break up and take off in all directions. In 1926, Born provided the perspective of probability amplitude. This relates calculations of quantum mechanics directly to probabilistic experimental observations.It is accepted as part of the Copenhagen interpretation of quantum mechanics. There are many other interpretations of quantum mechanics. In 1927, Hartree and Fock made the first step in an attempt to solve the N-body wave function, and developed the self-consistency cycle: an iterative algorithm to approximate the solution. Now it is also known as the Hartree–Fock method. The Slater determinant and permanent (of a matrix) was part of the method, provided by John C. Slater. Schrödinger did encounter an equation for the wave function that satisfied relativistic energy conservation before he published the non-relativistic one, but discarded it as it predicted negative probabilities and negative energies. In 1927, Klein, Gordon and Fock also found it, but incorporated the electromagnetic interaction and proved that it was Lorentz invariant. De Broglie also arrived at the same equation in 1928. This relativistic wave equation is now most commonly known as the Klein–Gordon equation.

[ "Quantum electrodynamics", "Quantum mechanics", "Computational chemistry", "Atomic physics", "Light front quantization", "Wave function renormalization", "Brillouin's theorem", "Two-body Dirac equations", "Prolate spheroidal wave function" ]
Parent Topic
Child Topic
    No Parent Topic