language-icon Old Web
English
Sign In

Caesium

Caesium (IUPAC spelling) (also spelled cesium (American spelling)) is a chemical element with the symbol Cs and atomic number 55. It is a soft, silvery-golden alkali metal with a melting point of 28.5 °C (83.3 °F), which makes it one of only five elemental metals that are liquid at or near room temperature. Caesium has physical and chemical properties similar to those of rubidium and potassium. The most reactive of all metals, it is pyrophoric and reacts with water even at −116 °C (−177 °F). It is the least electronegative element, with a value of 0.79 on the Pauling scale. It has only one stable isotope, caesium-133. Caesium is mined mostly from pollucite, while the radioisotopes, especially caesium-137, a fission product, are extracted from waste produced by nuclear reactors. The German chemist Robert Bunsen and physicist Gustav Kirchhoff discovered caesium in 1860 by the newly developed method of flame spectroscopy. The first small-scale applications for caesium were as a 'getter' in vacuum tubes and in photoelectric cells. In 1967, acting on Einstein's proof that the speed of light is the most constant dimension in the universe, the International System of Units used two specific wave counts from an emission spectrum of caesium-133 to co-define the second and the metre. Since then, caesium has been widely used in highly accurate atomic clocks. Since the 1990s, the largest application of the element has been as caesium formate for drilling fluids, but it has a range of applications in the production of electricity, in electronics, and in chemistry. The radioactive isotope caesium-137 has a half-life of about 30 years and is used in medical applications, industrial gauges, and hydrology. Nonradioactive caesium compounds are only mildly toxic, but the pure metal's tendency to react explosively with water means that caesium is considered a hazardous material, and the radioisotopes present a significant health and ecological hazard in the environment. Caesium is the softest element (it has a hardness of 0.2 Mohs). It is a very ductile, pale metal, which darkens in the presence of trace amounts of oxygen. When in the presence of mineral oil (where it is best kept during transport), it loses its metallic lustre and takes on a duller, grey appearance. It has a melting point of 28.5 °C (83.3 °F), making it one of the few elemental metals that are liquid near room temperature. Mercury is the only elemental metal with a known melting point lower than caesium. In addition, the metal has a rather low boiling point, 641 °C (1,186 °F), the lowest of all metals other than mercury. Its compounds burn with a blue or violet colour. Caesium forms alloys with the other alkali metals, gold, and mercury (amalgams). At temperatures below 650 °C (1,202 °F), it does not alloy with cobalt, iron, molybdenum, nickel, platinum, tantalum, or tungsten. It forms well-defined intermetallic compounds with antimony, gallium, indium, and thorium, which are photosensitive. It mixes with all the other alkali metals (except lithium); the alloy with a molar distribution of 41% caesium, 47% potassium, and 12% sodium has the lowest melting point of any known metal alloy, at −78 °C (−108 °F). A few amalgams have been studied: CsHg2 is black with a purple metallic lustre, while CsHg is golden-coloured, also with a metallic lustre. The golden colour of caesium comes from the decreasing frequency of light required to excite electrons of the alkali metals as the group is descended. For lithium through rubidium this frequency is in the ultraviolet, but for caesium it enters the blue–violet end of the spectrum; in other words, the plasmonic frequency of the alkali metals becomes lower from lithium to caesium. Thus caesium transmits and partially absorbs violet light preferentially while other colours (having lower frequency) are reflected; hence it appears yellowish. Caesium metal is highly reactive and very pyrophoric. It ignites spontaneously in air, and reacts explosively with water even at low temperatures, more so than the other alkali metals (first group of the periodic table). It reacts with solid water at temperatures as low as −116 °C (−177 °F). Because of this high reactivity, caesium metal is classified as a hazardous material. It is stored and shipped in dry, saturated hydrocarbons such as mineral oil. It can be handled only under inert gas, such as argon. However, a caesium-water explosion is often less powerful than a sodium-water explosion with a similar amount of sodium. This is because caesium explodes instantly upon contact with water, leaving little time for hydrogen to accumulate. Caesium can be stored in vacuum-sealed borosilicate glass ampoules. In quantities of more than about 100 grams (3.5 oz), caesium is shipped in hermetically sealed, stainless steel containers. The chemistry of caesium is similar to that of other alkali metals, in particular rubidium, the element above caesium in the periodic table. As expected for an alkali metal, the only common oxidation state is +1. Some small differences arise from the fact that it has a higher atomic mass and is more electropositive than other (nonradioactive) alkali metals. Caesium is the most electropositive chemical element. The caesium ion is also larger and less 'hard' than those of the lighter alkali metals.

[ "Nuclear chemistry", "Analytical chemistry", "Organic chemistry", "Inorganic chemistry", "Nuclear physics", "cesium ions", "Atomic fountain", "Ferrocyanide salt", "Caesium nitrate", "Caesium hydroxide" ]
Parent Topic
Child Topic
    No Parent Topic