language-icon Old Web
English
Sign In

Beverage antenna

The Beverage antenna or 'wave antenna' is a long-wire receiving antenna mainly used in the low frequency and medium frequency radio bands, invented by Harold H. Beverage in 1921. It is used by amateur radio, shortwave listening, and longwave radio DXers and military applications. The Beverage antenna or 'wave antenna' is a long-wire receiving antenna mainly used in the low frequency and medium frequency radio bands, invented by Harold H. Beverage in 1921. It is used by amateur radio, shortwave listening, and longwave radio DXers and military applications. A Beverage antenna consists of a horizontal wire from one-half to several wavelengths long (hundreds of feet at HF to several kilometres for longwave) suspended above the ground, with the feedline to the receiver attached to one end and the other terminated through a resistor to ground. The antenna has a unidirectional radiation pattern with the main lobe of the pattern at a shallow angle into the sky off the resistor-terminated end, making it ideal for reception of long distance skywave (skip) transmissions from stations over the horizon which reflect off the ionosphere. However the antenna must be built so the wire points at the location of the transmitter. The advantages of the Beverage are excellent directivity and a wider bandwidth than resonant antennas. Its disadvantages are its physical size, requiring considerable land area, and inability to rotate to change the direction of reception. Installations often use multiple antennas to provide wide azimuth coverage. Harold H. Beverage experimented with receiving antennas similar to the Beverage antenna in 1919 at the Otter Cliffs Radio Station. He discovered in 1920 that an otherwise nearly bidirectional long-wire antenna becomes unidirectional by placing it close to the lossy earth and by terminating one end of the wire with a resistor. By 1921, Beverage long-wave receiving antennas up to nine miles (14 km) long had been installed at RCA's Riverhead, New York, Belfast, Maine, Belmar, New Jersey, and Chatham, Massachusetts, receiver stations for transatlantic radiotelegraphy traffic. The antenna was patented in 1921 and named for its inventor Beverage. Perhaps the largest Beverage antenna—an array of four phased Beverages three miles (5 km) long and two miles (3 km) wide—was built by AT&T in Houlton, Maine, for the first transatlantic telephone system opened in 1927. The Beverage antenna consists of a horizontal wire one-half to several wavelengths long, suspended close to the ground, usually 10 to 20 feet high, pointed in the direction of the signal source. At the end toward the signal source it is terminated by a resistor to ground approximately equal in value to the characteristic impedance of the antenna considered as a transmission line, usually 400 to 800 ohms. At the other end it is connected to the receiver with a transmission line, through a balun to match the line to the antenna's characteristic impedance. Unlike other wire antennas such as dipole or monopole antennas which act as resonators, with the radio currents traveling in both directions along the element, bouncing back and forth between the ends as standing waves, the Beverage antenna is a traveling wave antenna; the radio frequency current travels in one direction along the wire, in the same direction as the radio waves. The lack of resonance gives it a wider bandwidth than resonant antennas. It receives vertically polarized radio waves, but unlike other vertically polarized antennas it is suspended close to the ground, and requires some resistance in the ground to work. The Beverage antenna relies on 'wave tilt' for its operation. At low and medium frequencies, a vertically polarized radio frequency electromagnetic wave traveling close to the surface of the earth with finite ground conductivity sustains a loss that causes the wavefront to 'tilt over' at an angle. The electric field is not perpendicular to the ground but at an angle, producing an electric field component parallel to the Earth's surface. If a horizontal wire is suspended close to the Earth and approximately parallel to the wave's direction, the electric field generates an oscillating RF current wave traveling along the wire, propagating in the same direction as the wavefront. The RF currents traveling along the wire add in phase and amplitude throughout the length of the wire, producing maximum signal strength at the far end of the antenna where the receiver is connected. The antenna wire and the ground under it together can be thought of as a 'leaky' transmission line which absorbs energy from the radio waves. The velocity of the current waves in the antenna is less than the speed of light due to the ground. The velocity of the wavefront along the wire is also less than the speed of light due to its angle. At a certain angle θmax the two velocities are equal. At this angle the gain of the antenna is maximum, so the radiation pattern has a main lobe at this angle. The angle of the main lobe is

[ "Antenna aperture", "Antenna factor", "Antenna (radio)", "Directional antenna" ]
Parent Topic
Child Topic
    No Parent Topic