language-icon Old Web
English
Sign In

Graviton

In theories of quantum gravity, the graviton is the hypothetical quantum of gravity, an elementary particle that mediates the force of gravity. There is no complete quantum field theory of gravitons due to an outstanding mathematical problem with renormalization in general relativity. In string theory, believed to be a consistent theory of quantum gravity, the graviton is a massless state of a fundamental string. In theories of quantum gravity, the graviton is the hypothetical quantum of gravity, an elementary particle that mediates the force of gravity. There is no complete quantum field theory of gravitons due to an outstanding mathematical problem with renormalization in general relativity. In string theory, believed to be a consistent theory of quantum gravity, the graviton is a massless state of a fundamental string. If it exists, the graviton is expected to be massless because the gravitational force is very long range and appears to propagate at the speed of light. The graviton must be a spin-2 boson because the source of gravitation is the stress–energy tensor, a second-order tensor (compared with electromagnetism's spin-1 photon, the source of which is the four-current, a first-order tensor). Additionally, it can be shown that any massless spin-2 field would give rise to a force indistinguishable from gravitation, because a massless spin-2 field would couple to the stress–energy tensor in the same way that gravitational interactions do. This result suggests that, if a massless spin-2 particle is discovered, it must be the graviton. It is hypothesized that gravitational interactions are mediated by an as yet undiscovered elementary particle, dubbed the graviton. The three other known forces of nature are mediated by elementary particles: electromagnetism by the photon, the strong interaction by gluons, and the weak interaction by the W and Z bosons. All three of these forces appear to be accurately described by the standard model of particle physics. In the classical limit, a successful theory of gravitons would reduce to general relativity, which itself reduces to Newton's law of gravitation in the weak-field limit. The term graviton was originally coined in 1934 by Soviet physicists Dmitrii Blokhintsev and F. Gal'perin. When describing graviton interactions, the classical theory of Feynman diagrams, and semiclassical corrections such as one-loop diagrams behave normally. However, Feynman diagrams with at least two loops lead to ultraviolet divergences. These infinite results cannot be removed because quantized general relativity is not perturbatively renormalizable, unlike quantum electrodynamics and models such as the Yang–Mills theory. Therefore, incalculable answers are found from the perturbation method by which physicists calculate the probability of a particle to emit or absorb gravitons, and the theory loses predictive veracity. Those problems and the complementary approximation framework are grounds to show that a theory more unified than quantized general relativity is required to describe the behavior near the Planck scale. Like the force carriers of the other forces (see charged black hole), gravitation plays a role in general relativity, in defining the spacetime in which events take place. In some descriptions energy modifies the 'shape' of spacetime itself, and gravity is a result of this shape, an idea which at first glance may appear hard to match with the idea of a force acting between particles. Because the diffeomorphism invariance of the theory does not allow any particular space-time background to be singled out as the 'true' space-time background, general relativity is said to be background-independent. In contrast, the Standard Model is not background-independent, with Minkowski space enjoying a special status as the fixed background space-time. A theory of quantum gravity is needed in order to reconcile these differences. Whether this theory should be background-independent is an open question. The answer to this question will determine our understanding of what specific role gravitation plays in the fate of the universe. String theory predicts the existence of gravitons and their well-defined interactions. A graviton in perturbative string theory is a closed string in a very particular low-energy vibrational state. The scattering of gravitons in string theory can also be computed from the correlation functions in conformal field theory, as dictated by the AdS/CFT correspondence, or from matrix theory. A feature of gravitons in string theory is that, as closed strings without endpoints, they would not be bound to branes and could move freely between them. If we live on a brane (as hypothesized by brane theories), this 'leakage' of gravitons from the brane into higher-dimensional space could explain why gravitation is such a weak force, and gravitons from other branes adjacent to our own could provide a potential explanation for dark matter. However, if gravitons were to move completely freely between branes, this would dilute gravity too much, causing a violation of Newton's inverse-square law. To combat this, Lisa Randall found that a three-brane (such as ours) would have a gravitational pull of its own, preventing gravitons from drifting freely, possibly resulting in the diluted gravity we observe, while roughly maintaining Newton's inverse square law. See brane cosmology. A theory by Ahmed Farag Ali and Saurya Das adds quantum mechanical corrections (using Bohm trajectories) to general relativistic geodesics. If gravitons are given a small but non-zero mass, it could explain the cosmological constant without need for dark energy and solve the smallness problem. The theory received an Honorable Mention in the 2014 Essay Competition of the Gravity Research Foundation for explaining the smallness of cosmological constant. Also the theory received an Honorable Mention in the 2015 Essay Competition of the Gravity Research Foundation for naturally explaining the observed large-scale homogeneity and isotropy of the universe due to the proposed quantum corrections.

[ "Gravitation", "Composite gravity", "Alternatives to general relativity", "Graviscalar", "Massive gravity" ]
Parent Topic
Child Topic
    No Parent Topic