language-icon Old Web
English
Sign In

KM3NeT

The Cubic Kilometre Neutrino Telescope, or KM3NeT, is a future European research infrastructure that will be located at the bottom of the Mediterranean Sea. It will host the next-generation neutrino telescope in the form of a water Cherenkov detector with an instrumented volume of about five cubic kilometres distributed over three locations in the Mediterranean: KM3NeT-Fr (off Toulon, France), KM3NeT-It (off Portopalo di Capo Passero, Sicily, Italy) and KM3NeT-Gr (off Pylos, Peloponnese, Greece). The KM3NeT project continues work done under the ANTARES (telescope built off coast of France), NEMO (planned telescope off coast of Italy) and NESTOR (planned telescope off coast of Greece) neutrino telescope projects. Electronics to read out the photomultiplier tubes and calibration instrumentation inside the KM3NeT DOMThe KM3NeT LOM – the launching vehicle of Optical Modules – being loaded onto the RV Pelagia deployment vessel. A full string detection is rolled onto the LOM. After arrival at the seabed the string is unrolled to its full length.A prototype KM3NeT DOM installed in the instrumentation line of the ANTARES neutrino telescope. The DOM is operational since April 2013. The Cubic Kilometre Neutrino Telescope, or KM3NeT, is a future European research infrastructure that will be located at the bottom of the Mediterranean Sea. It will host the next-generation neutrino telescope in the form of a water Cherenkov detector with an instrumented volume of about five cubic kilometres distributed over three locations in the Mediterranean: KM3NeT-Fr (off Toulon, France), KM3NeT-It (off Portopalo di Capo Passero, Sicily, Italy) and KM3NeT-Gr (off Pylos, Peloponnese, Greece). The KM3NeT project continues work done under the ANTARES (telescope built off coast of France), NEMO (planned telescope off coast of Italy) and NESTOR (planned telescope off coast of Greece) neutrino telescope projects. KM3NeT will search for neutrinos from distant astrophysical sources like supernova remnants, gamma-ray bursts, supernovae or colliding stars and will be a powerful tool in the search for dark matter in the universe. Its prime objective is to detect neutrinos from sources in our galaxy. Arrays of thousands of optical sensor modules will detect the faint light in the deep sea from charged particles originating from collisions of the neutrinos and the water or rock in the vicinity of the detector. The research infrastructure will also house instrumentation for other sciences like marine biology, oceanography and geophysics for long-term and on-line monitoring of the deep-sea environment and the sea bottom at depth of several kilometres.

[ "Neutrino detector" ]
Parent Topic
Child Topic
    No Parent Topic