Old Web

English

Sign In

In the study of complex networks, a network is said to have community structure if the nodes of the network can be easily grouped into (potentially overlapping) sets of nodes such that each set of nodes is densely connected internally. In the particular case of non-overlapping community finding, this implies that the network divides naturally into groups of nodes with dense connections internally and sparser connections between groups. But overlapping communities are also allowed. The more general definition is based on the principle that pairs of nodes are more likely to be connected if they are both members of the same community(ies), and less likely to be connected if they do not share communities. A related but different problem is community search, where the goal is to find a community that a certain vertex belongs to. In the study of complex networks, a network is said to have community structure if the nodes of the network can be easily grouped into (potentially overlapping) sets of nodes such that each set of nodes is densely connected internally. In the particular case of non-overlapping community finding, this implies that the network divides naturally into groups of nodes with dense connections internally and sparser connections between groups. But overlapping communities are also allowed. The more general definition is based on the principle that pairs of nodes are more likely to be connected if they are both members of the same community(ies), and less likely to be connected if they do not share communities. A related but different problem is community search, where the goal is to find a community that a certain vertex belongs to. In the study of networks, such as computer and information networks, social networks and biological networks, a number of different characteristics have been found to occur commonly, including the small-world property, heavy-tailed degree distributions, and clustering, among others. Another common characteristic is community structure.In the context of networks, community structure refers to the occurrence of groups of nodes in a network that are more densely connected internally than with the rest of the network, as shown in the example image to the right. This inhomogeneity of connections suggests that the network has certain natural divisions within it. Communities are often defined in terms of the partition of the set of vertices, that is each node is put into one and only one community, just as in the figure. This is a useful simplification and most community detection methods find this type of community structure. However, in some cases a better representation could be one where vertices are in more than one community. This might happen in a social network where each vertex represents a person, and the communities represent the different groups of friends: one community for family, another community for co-workers, one for friends in the same sports club, and so on. The use of cliques for community detection discussed below is just one example of how such overlapping community structure can be found. Some networks may not have any meaningful community structure. Many basic network models, for example, such as the random graph and the Barabási–Albert model, do not display community structure. Community structures are quite common in real networks. Social networks include community groups (the origin of the term, in fact) based on common location, interests, occupation, etc. Finding an underlying community structure in a network, if it exists, is important for a number of reasons. Communities allow us to create a large scale map of a network since individual communities act like meta-nodes in the network which makes its study easier. Individual communities also shed light on the function of the system represented by the network since communities often correspond to functional units of the system. In metabolic networks, such functional groups correspond to cycles or pathways whereas in the protein interaction network, communities correspond to proteins with similar functionality inside a biological cell. Similarly, citation networks form communities by research topic. Being able to identify these sub-structures within a network can provide insight into how network function and topology affect each other. Such insight can be useful in improving some algorithms on graphs such as spectral clustering. A very important reason that makes communities important is that they often have very different properties than the average properties of the networks. Thus, only concentrating on the average properties usually misses many important and interesting features inside the networks. For example, in a given social network, both gregarious and reticent groups might exists simultaneously.

Parent Topic

Child Topic

No Parent Topic