language-icon Old Web
English
Sign In

Hearing aid

A hearing aid is a device designed to improve hearing by making sound audible to a person with hearing loss. Hearing aids are classified as medical devices in most countries, and regulated by the respective regulations. Small audio amplifiers such as PSAPs or other plain sound reinforcing systems cannot be sold as 'hearing aids'. Early devices, such as ear trumpets or ear horns, were passive amplification cones designed to gather sound energy and direct it into the ear canal. Modern devices are computerised electroacoustic systems that transform environmental sound to make it audible, according to audiometrical and cognitive rules. Modern devices also utilize sophisticated digital signal processing to try and improve speech intelligibility and comfort for the user. Such signal processing includes feedback management, wide dynamic range compression, directionality, frequency lowering, and noise reduction. Modern hearing aids require configuration to match the hearing loss, physical features, and lifestyle of the wearer. The hearing aid is fit to the most recent audiogram and is programmed by frequency. This process is called 'fitting' and is performed by a Doctor of Audiology, also called an audiologist (AuD), or by a Hearing Instrument Specialist (HIS). The amount of benefit a hearing aid delivers depends in large part on the quality of its fitting. Almost all hearing aids in use in the US are digital hearing aids. Devices similar to hearing aids include the osseointegrated auditory prosthesis (formerly called the bone-anchored hearing aid) and cochlear implant. Hearing aids are used for a variety of pathologies including sensorineural hearing loss, conductive hearing loss, and single-sided deafness. Hearing aid candidacy is typically determined by a Doctor of Audiology, who will also fit the device based on the nature and degree of the hearing loss being treated. The amount of benefit experienced by the user of the hearing aid is multi-factorial, depending on the type, severity, and etiology of the hearing loss, the technology and fitting of the device, and on the motivation, personality, lifestyle, and overall health of the user. Hearing aids are incapable of truly correcting a hearing loss; they are an aid to make sounds more audible. The most common form of hearing loss for which hearing aids are sought is sensorineural, resulting from damage to the hair cells and synapses of the cochlea and auditory nerve. Sensorineural hearing loss reduces the sensitivity to sound, which a hearing aid can partially accommodate by making sound louder. Other decrements in auditory perception caused by sensorineural hearing loss, such as abnormal spectral and temporal processing, and which may negatively affect speech perception, are more difficult to compensate for using digital signal processing and in some cases may be exacerbated by the use of amplification. Conductive hearing losses, which do not involve damage to the cochlea, tend to be better treated by hearing aids; the hearing aid is able to sufficiently amplify sound to account for the attenuation caused by the conductive component. Once the sound is able to reach the cochlea at normal or near-normal levels, the cochlea and auditory nerve are able to transmit signals to the brain normally. Common issues with hearing aid fitting and use are the occlusion effect, loudness recruitment, and understanding speech in noise. Once a common problem, feedback is generally now well-controlled through the use of feedback management algorithms. There are several ways of evaluating how well a hearing aid compensates for hearing loss. One approach is audiometry which measures a subject's hearing levels in laboratory conditions. The threshold of audibility for various sounds and intensities is measured in a variety of conditions. Although audiometric tests may attempt to mimic real-world conditions, the patient's own every day experiences may differ. An alternative approach is self-report assessment, where the patient reports their experience with the hearing aid. Hearing aid outcome can be represented by three dimensions:

[ "Acoustics", "Electrical engineering", "Audiology", "Tinnitus masker", "Assistive listening device", "Middle Ear Implant", "Fit hearing aid", "Hearing aid provision" ]
Parent Topic
Child Topic
    No Parent Topic