language-icon Old Web
English
Sign In

Quark model

In particle physics, the quark model is a classification scheme for hadrons in terms of their valence quarks—the quarks and antiquarks which give rise to the quantum numbers of the hadrons. The quark model underlies 'flavor SU(3)', or the Eightfold Way, the successful classification scheme organizing the large number of lighter hadrons that were being discovered starting in the 1950s and continuing through the 1960s. It received experimental verification beginning in the late 1960s and is a valid effective classification of them to date. The model was independently proposed by physicists Murray Gell-Mann, who dubbed them 'quarks' in a concise paper, and George Zweig, who suggested 'aces' in a longer manuscript. André Petermann also touched upon the central ideas from 1963 to 1965, without as much quantitative substantiation. Today, the model has essentially been absorbed as a component of the established quantum field theory of strong and electroweak particle interactions, dubbed the Standard Model. In particle physics, the quark model is a classification scheme for hadrons in terms of their valence quarks—the quarks and antiquarks which give rise to the quantum numbers of the hadrons. The quark model underlies 'flavor SU(3)', or the Eightfold Way, the successful classification scheme organizing the large number of lighter hadrons that were being discovered starting in the 1950s and continuing through the 1960s. It received experimental verification beginning in the late 1960s and is a valid effective classification of them to date. The model was independently proposed by physicists Murray Gell-Mann, who dubbed them 'quarks' in a concise paper, and George Zweig, who suggested 'aces' in a longer manuscript. André Petermann also touched upon the central ideas from 1963 to 1965, without as much quantitative substantiation. Today, the model has essentially been absorbed as a component of the established quantum field theory of strong and electroweak particle interactions, dubbed the Standard Model. Hadrons are not really 'elementary', and can be regarded as bound states of their 'valence quarks' and antiquarks, which give rise to the quantum numbers of the hadrons. These quantum numbers are labels identifying the hadrons, and are of two kinds. One set comes from the Poincaré symmetry—JPC, where J, P and C stand for the total angular momentum, P-symmetry, and C-symmetry, respectively. The remaining are flavor quantum numbers such as the isospin, strangeness, charm, and so on. The strong interactions binding the quarks together are insensitive to these quantum numbers, so variation of them leads to systematic mass and coupling relationships among the hadrons in the same flavor multiplet. All quarks are assigned a baryon number of ⅓. Up, charm and top quarks have an electric charge of +⅔, while the down, strange, and bottom quarks have an electric charge of −⅓. Antiquarks have the opposite quantum numbers. Quarks are spin-½ particles, and thus fermions. Each quark or antiquark obeys the Gell-Mann−Nishijima formula individually, so any additive assembly of them will as well. Mesons are made of a valence quark−antiquark pair (thus have a baryon number of 0), while baryons are made of three quarks (thus have a baryon number of 1). This article discusses the quark model for the up, down, and strange flavors of quark (which form an approximate flavor SU(3) symmetry). There are generalizations to larger number of flavors. Developing classification schemes for hadrons became a timely question after new experimental techniques uncovered so many of them, that it became clear that they could not all be elementary. These discoveries led Wolfgang Pauli to exclaim 'Had I foreseen that, I would have gone into botany.' and Enrico Fermi to advise his student Leon Lederman: 'Young man, if I could remember the names of these particles, I would have been a botanist.' These new schemes earned Nobel prizes for experimental particle physicists, including Luis Alvarez, who was at the forefront of many of these developments. Constructing hadrons as bound states of fewer constituents would thus organize the 'zoo' at hand. Several early proposals, such as the ones by Enrico Fermi and Chen-Ning Yang (1949), and the Sakata model (1956), ended up satisfactorily covering the mesons, but failed with baryons, and so were unable to explain all the data. The Gell-Mann–Nishijima formula, developed by Murray Gell-Mann and Kazuhiko Nishijima, led to the Eightfold Way classification, invented by Gell-Mann, with important independent contributions from Yuval Ne'eman, in 1961. The hadrons were organized into SU(3) representation multiplets, octets and decuplets, of roughly the same mass, due to the strong interactions; and smaller mass differences linked to the flavor quantum numbers, invisible to the strong interactions. The Gell-Mann–Okubo mass formula systematized the quantification of these small mass differences among members of a hadronic multiplet, controlled by the explicit symmetry breaking of SU(3). The spin-​3⁄2 Ω− baryon, a member of the ground-state decuplet, was a crucial prediction of that classification. After it was discovered in an experiment at Brookhaven National Laboratory, Gell-Mann received a Nobel prize in physics for his work on the Eightfold Way, in 1969. Finally, in 1964, Gell-Mann, and, independently, George Zweig, discerned what the Eightfold Way picture encodes. They posited elementary fermionic constituents, unobserved, and possibly unobservable in a free form, underlying and elegantly encoding the Eightfold Way classification, in an economical, tight structure, resulting in further simplicity. Hadronic mass differences were now linked to the different masses of the constituent quarks.

[ "Quark", "Hadron", "Elementary particle", "particle model", "Meson", "Rishon model", "Roper resonance", "Up quark", "Down quark", "Hypercolor" ]
Parent Topic
Child Topic
    No Parent Topic