language-icon Old Web
English
Sign In

Polymerization

In polymer chemistry, polymerization is a process of reacting monomer molecules together in a chemical reaction to form polymer chains or three-dimensional networks. There are many forms of polymerization and different systems exist to categorize them. In polymer chemistry, polymerization is a process of reacting monomer molecules together in a chemical reaction to form polymer chains or three-dimensional networks. There are many forms of polymerization and different systems exist to categorize them. In chemical compounds, polymerization can occur via a variety of reaction mechanisms that vary in complexity due to the functional groups present in the reactants and their inherent steric effects. In more straightforward polymerizations, alkenes form polymers through relatively simple radical reactions; in contrast, reactions involving substitution at a carbonyl group require more complex synthesis due to the way in which reactants polymerize. Alkanes can also be polymerized, but only with the help of strong acids. As alkenes can polymerize in somewhat straightforward radical reactions, they form useful compounds such as polyethylene and polyvinyl chloride (PVC), which are produced in high tonnages each year due to their usefulness in manufacturing processes of commercial products, such as piping, insulation and packaging. In general, polymers such as PVC are referred to as 'homopolymers,' as they consist of repeated long chains or structures of the same monomer unit, whereas polymers that consist of more than one monomer unit are referred to as copolymers (or co-polymers). Other monomer units, such as formaldehyde hydrates or simple aldehydes, are able to polymerize themselves at quite low temperatures (ca. −80 °C) to form trimers; molecules consisting of 3 monomer units, which can cyclize to form ring cyclic structures, or undergo further reactions to form tetramers, or 4 monomer-unit compounds. Such small polymers are referred to as oligomers. Generally, because formaldehyde is an exceptionally reactive electrophile it allows nucleophilic addition of hemiacetal intermediates, which are in general short-lived and relatively unstable 'mid-stage' compounds that react with other molecules present to form more stable polymeric compounds. Polymerization that is not sufficiently moderated and proceeds at a fast rate can be very hazardous. This phenomenon is known as hazardous polymerization and can cause fires and explosions. There are two main classes of polymerization reaction mechanisms: step-growth and chain-growth. In step-growth (or step) polymerization, each step may involve the combination of two polymer molecules of any lengths to form a longer polymer molecule. The average molar mass increases slowly and long chains are formed only late in the reaction.. Step-growth polymers are formed by independent reaction steps between functional groups of monomer units, usually containing heteroatoms such as nitrogen or oxygen. Most step-growth polymers are also classified as condensation polymers, since a small molecule such as water is lost when the polymer chain is lengthened. For example, polyester chains grow by reaction of alcohol and carboxylic acid groups to form ester links with loss of water. However, there are exceptions; for example polyurethanes are step-growth polymers formed from isocyanate and alcohol bifunctional monomers) without loss of water or other small molecule, and are classified as addition polymers rather than condensation polymers.

[ "Polymer", "Dental resins", "Emulsion polymerization", "Vinyl carbazole", "Poly(tetrahydrofuran)", "Poly(p-phenylenediamine)" ]
Parent Topic
Child Topic
    No Parent Topic