language-icon Old Web
English
Sign In

Sympatric speciation

Sympatric speciation is the evolution of a new species from a surviving ancestral species while both continue to inhabit the same geographic region. In evolutionary biology and biogeography, sympatric and sympatry are terms referring to organisms whose ranges overlap so that they occur together at least in some places. If these organisms are closely related (e.g. sister species), such a distribution may be the result of sympatric speciation. Etymologically, sympatry is derived from the Greek roots συν ('together') and πατρίς ('homeland'). The term was invented by Edward Bagnall Poulton in 1904, who explains the derivation. Sympatric speciation is the evolution of a new species from a surviving ancestral species while both continue to inhabit the same geographic region. In evolutionary biology and biogeography, sympatric and sympatry are terms referring to organisms whose ranges overlap so that they occur together at least in some places. If these organisms are closely related (e.g. sister species), such a distribution may be the result of sympatric speciation. Etymologically, sympatry is derived from the Greek roots συν ('together') and πατρίς ('homeland'). The term was invented by Edward Bagnall Poulton in 1904, who explains the derivation. Sympatric speciation is one of three traditional geographic modes of speciation. Allopatric speciation is the evolution of species caused by the geographic isolation of two or more populations of a species. In this case, divergence is facilitated by the absence of gene flow. Parapatric speciation is the evolution of geographically adjacent populations into distinct species. In this case, divergence occurs despite limited interbreeding where the two diverging groups come into contact. In sympatric speciation, there is no geographic constraint to interbreeding. These categories are special cases of a continuum from zero (sympatric) to complete (allopatric) spatial segregation of diverging groups. In multicellular eukaryotic organisms, sympatric speciation is a plausible process that is known to occur, but the frequency with which it occurs is not known.In bacteria, however, the analogous process (defined as 'the origin of new bacterial species that occupy definable ecological niches') might be more common because bacteria are less constrained by the homogenizing effects of sexual reproduction and are prone to comparatively dramatic and rapid genetic change through horizontal gene transfer. Sympatric speciation events are quite common in plants, which are prone to acquiring multiple homologous sets of chromosomes, resulting in polyploidy. The polyploid offspring occupy the same environment as the parent plants (hence sympatry), but are reproductively isolated. A number of models have been proposed for alternative modes of sympatric speciation. The most popular, which invokes the disruptive selection model, was first put forward by John Maynard Smith in 1966. Maynard Smith suggested that homozygous individuals may, under particular environmental conditions, have a greater fitness than those with alleles heterozygous for a certain trait. Under the mechanism of natural selection, therefore, homozygosity would be favoured over heterozygosity, eventually leading to speciation. Sympatric divergence could also result from the sexual conflict. Disruption may also occur in multiple-gene traits. The medium ground finch (Geospiza fortis) is showing gene pool divergence in a population on Santa Cruz Island. Beak morphology conforms to two different size ideals, while intermediate individuals are selected against. Some characteristics (termed magic traits) such as beak morphology may drive speciation because they also affect mating signals. In this case, different beak phenotypes may result in different bird calls, providing a barrier to exchange between the gene pools. A somewhat analogous system has been reported in horseshoe bats, in which echolocation call frequency appears to be a magic trait. In these bats, the constant frequency component of the call not only determines prey size but may also function in aspects of social communication. Work from one species, the large-eared horseshoe bat (Rhinolophus philippinensis), shows that abrupt changes in call frequency among sympatric morphs is correlated with reproductive isolation. A further well-studied circumstance of sympatric speciation is when insects feed on more than one species of host plant. In this case insects become specialized as they struggle to overcome the various plants' defense mechanisms. (Drès and Mallet, 2002) Rhagoletis pomonella, the apple maggot, may be currently undergoing sympatric or, more precisely, heteropatric (see heteropatry) speciation. The apple feeding race of this species appears to have spontaneously emerged from the hawthorn feeding race in the 1800–1850 AD time frame, after apples were first introduced into North America. The apple feeding race does not now normally feed on hawthorns, and the hawthorn feeding race does not now normally feed on apples. This may be an early step towards the emergence of a new species. Some parasitic ants may have evolved via sympatric speciation.Isolated and relatively homogeneous habitats such as crater lakes and islands are among the best geographical settings in which to demonstrate sympatric speciation. For example, Nicaragua crater lake cichlid fishes include nine described species and dozens of undescribed species that have evolved by sympatric speciation. Monostroma latissimum, a marine green algae, also shows sympatric speciation in southwest Japanese islands. Although panmictic, the molecular phylogenetics using nuclear introns revealed staggering diversification of population.

[ "Ecology", "Genetics", "Botany", "Zoology", "Coregonus fontanae", "Hyemoschus", "Petrotilapia", "Kinixys erosa", "Blepharoneura" ]
Parent Topic
Child Topic
    No Parent Topic