language-icon Old Web
English
Sign In

Geomorphology

Geomorphology (from Ancient Greek: γῆ, gê, 'earth'; μορφή, morphḗ, 'form'; and λόγος, lógos, 'study') is the scientific study of the origin and evolution of topographic and bathymetric features created by physical, chemical or biological processes operating at or near the Earth's surface. Geomorphologists seek to understand why landscapes look the way they do, to understand landform history and dynamics and to predict changes through a combination of field observations, physical experiments and numerical modeling. Geomorphologists work within disciplines such as physical geography, geology, geodesy, engineering geology, archaeology, climatology and geotechnical engineering. This broad base of interests contributes to many research styles and interests within the field. Geomorphology (from Ancient Greek: γῆ, gê, 'earth'; μορφή, morphḗ, 'form'; and λόγος, lógos, 'study') is the scientific study of the origin and evolution of topographic and bathymetric features created by physical, chemical or biological processes operating at or near the Earth's surface. Geomorphologists seek to understand why landscapes look the way they do, to understand landform history and dynamics and to predict changes through a combination of field observations, physical experiments and numerical modeling. Geomorphologists work within disciplines such as physical geography, geology, geodesy, engineering geology, archaeology, climatology and geotechnical engineering. This broad base of interests contributes to many research styles and interests within the field. Earth's surface is modified by a combination of surface processes that shape landscapes, and geologic processes that cause tectonic uplift and subsidence, and shape the coastal geography. Surface processes comprise the action of water, wind, ice, fire, and living things on the surface of the Earth, along with chemical reactions that form soils and alter material properties, the stability and rate of change of topography under the force of gravity, and other factors, such as (in the very recent past) human alteration of the landscape. Many of these factors are strongly mediated by climate. Geologic processes include the uplift of mountain ranges, the growth of volcanoes, isostatic changes in land surface elevation (sometimes in response to surface processes), and the formation of deep sedimentary basins where the surface of the Earth drops and is filled with material eroded from other parts of the landscape. The Earth's surface and its topography therefore are an intersection of climatic, hydrologic, and biologic action with geologic processes, or alternatively stated, the intersection of the Earth's lithosphere with its hydrosphere, atmosphere, and biosphere. The broad-scale topographies of the Earth illustrate this intersection of surface and subsurface action. Mountain belts are uplifted due to geologic processes. Denudation of these high uplifted regions produces sediment that is transported and deposited elsewhere within the landscape or off the coast. On progressively smaller scales, similar ideas apply, where individual landforms evolve in response to the balance of additive processes (uplift and deposition) and subtractive processes (subsidence and erosion). Often, these processes directly affect each other: ice sheets, water, and sediment are all loads that change topography through flexural isostasy. Topography can modify the local climate, for example through orographic precipitation, which in turn modifies the topography by changing the hydrologic regime in which it evolves. Many geomorphologists are particularly interested in the potential for feedbacks between climate and tectonics, mediated by geomorphic processes. In addition to these broad-scale questions, geomorphologists address issues that are more specific and/or more local. Glacial geomorphologists investigate glacial deposits such as moraines, eskers, and proglacial lakes, as well as glacial erosional features, to build chronologies of both small glaciers and large ice sheets and understand their motions and effects upon the landscape. Fluvial geomorphologists focus on rivers, how they transport sediment, migrate across the landscape, cut into bedrock, respond to environmental and tectonic changes, and interact with humans. Soils geomorphologists investigate soil profiles and chemistry to learn about the history of a particular landscape and understand how climate, biota, and rock interact. Other geomorphologists study how hillslopes form and change. Still others investigate the relationships between ecology and geomorphology. Because geomorphology is defined to comprise everything related to the surface of the Earth and its modification, it is a broad field with many facets. Geomorphologists use a wide range of techniques in their work. These may include fieldwork and field data collection, the interpretation of remotely sensed data, geochemical analyses, and the numerical modelling of the physics of landscapes. Geomorphologists may rely on geochronology, using dating methods to measure the rate of changes to the surface. Terrain measurement techniques are vital to quantitatively describe the form of the Earth's surface, and include differential GPS, remotely sensed digital terrain models and laser scanning, to quantify, study, and to generate illustrations and maps. Practical applications of geomorphology include hazard assessment (such as landslide prediction and mitigation), river control and stream restoration, and coastal protection. Planetary geomorphology studies landforms on other terrestrial planets such as Mars. Indications of effects of wind, fluvial, glacial, mass wasting, meteor impact, tectonics and volcanic processes are studied. This effort not only helps better understand the geologic and atmospheric history of those planets but also extends geomorphological study of the Earth. Planetary geomorphologists often use Earth analogues to aid in their study of surfaces of other planets. Other than some notable exceptions in antiquity, geomorphology is a relatively young science, growing along with interest in other aspects of the earth sciences in the mid-19th century. This section provides a very brief outline of some of the major figures and events in its development. The study of landforms and the evolution of the Earth's surface can be dated back to scholars of Classical Greece. Herodotus argued from observations of soils that the Nile delta was actively growing into the Mediterranean Sea, and estimated its age. Aristotle speculated that due to sediment transport into the sea, eventually those seas would fill while the land lowered. He claimed that this would mean that land and water would eventually swap places, whereupon the process would begin again in an endless cycle. Another early theory of geomorphology was devised by the polymath Chinese scientist and statesman Shen Kuo (1031–1095 AD). This was based on his observation of marine fossil shells in a geological stratum of a mountain hundreds of miles from the Pacific Ocean. Noticing bivalve shells running in a horizontal span along the cut section of a cliffside, he theorized that the cliff was once the pre-historic location of a seashore that had shifted hundreds of miles over the centuries. He inferred that the land was reshaped and formed by soil erosion of the mountains and by deposition of silt, after observing strange natural erosions of the Taihang Mountains and the Yandang Mountain near Wenzhou. Furthermore, he promoted the theory of gradual climate change over centuries of time once ancient petrified bamboos were found to be preserved underground in the dry, northern climate zone of Yanzhou, which is now modern day Yan'an, Shaanxi province.

[ "Geology", "slope angle", "Devonian", "Denudation", "Ice calving", "Geological Concepts" ]
Parent Topic
Child Topic
    No Parent Topic