language-icon Old Web
English
Sign In

ISDB

The Integrated Services Digital Broadcasting (ISDB; Japanese: 統合デジタル放送サービス, Tōgō dejitaru hōsō sābisu) is a Japanese standard for digital television (DTV) and digital radio used by the country's radio and television networks. ISDB replaced NTSC-J analog television system and the previously used MUSE Hi-vision analogue HDTV system in Japan, and will be replacing NTSC, PAL-M and PAL-N in South America and the Philippines. Digital Terrestrial Television Broadcasting (DTTB) services using ISDB-T started in Japan in December 2003 and in Brazil in December 2007 as a trial. Since then, many countries have adopted ISDB over other digital broadcasting standards. The Integrated Services Digital Broadcasting (ISDB; Japanese: 統合デジタル放送サービス, Tōgō dejitaru hōsō sābisu) is a Japanese standard for digital television (DTV) and digital radio used by the country's radio and television networks. ISDB replaced NTSC-J analog television system and the previously used MUSE Hi-vision analogue HDTV system in Japan, and will be replacing NTSC, PAL-M and PAL-N in South America and the Philippines. Digital Terrestrial Television Broadcasting (DTTB) services using ISDB-T started in Japan in December 2003 and in Brazil in December 2007 as a trial. Since then, many countries have adopted ISDB over other digital broadcasting standards. ISDB is maintained by the Japanese organization ARIB. The standards can be obtained for free at the Japanese organization DiBEG website and at ARIB. The core standards of ISDB are ISDB-S (satellite television), ISDB-T (terrestrial), ISDB-C (cable) and 2.6 GHz band mobile broadcasting which are all based on MPEG-2 or MPEG-4 standard for multiplexing with transport stream structure and video and audio coding (MPEG-2 or H.264), and are capable of high definition television (HDTV) and standard definition television. ISDB-T and ISDB-Tsb are for mobile reception in TV bands. 1seg is the name of an ISDB-T service for reception on cell phones, laptop computers and vehicles. The concept was named for its similarity to ISDN, because both allow multiple channels of data to be transmitted together (a process called multiplexing). This is also much like another digital radio system, Eureka 147, which calls each group of stations on a transmitter an ensemble; this is very much like the multi-channel digital TV standard DVB-T. ISDB-T operates on unused TV channels, an approach taken by other countries for TV but never before for radio. The various flavors of ISDB differ mainly in the modulations used, due to the requirements of different frequency bands. The 12 GHz band ISDB-S uses PSK modulation, 2.6 GHz band digital sound broadcasting uses CDM, and ISDB-T (in VHF and/or UHF band) uses COFDM with PSK/QAM. Besides audio and video transmission, ISDB also defines data connections (Data broadcasting) with the internet as a return channel over several media (10Base-T/100Base-T, Telephone line modem, Mobile phone, Wireless LAN (IEEE 802.11) etc.) and with different protocols. This is used, for example, for interactive interfaces like data broadcasting (ARIB STD-B24) and electronic program guides (EPG). The ISDB specification describes a lot of (network) interfaces, but most importantly the Common Interface for Conditional Access System (CAS). While ISDB has examples of implementing various kinds of CASes, in Japan CAS called 'B-CAS' is used. (ARIB STD-B25) defines the Common Scrambling Algorithm (CSA) system called MULTI2 required for (de-)scrambling television. The ISDB CAS system in Japan is operated by a company named B-CAS; the CAS card is called B-CAS card. The Japanese ISDB signal is always encrypted by the B-CAS system even if it is a free television program. That is why it is commonly called 'Pay per view system without charge'. An interface for mobile reception is under consideration. ISDB supports RMP (Rights management and protection). Since all digital television (DTV) systems carry digital data content, a DVD or high-definition (HD) recorder could easily copy content losslessly.Hollywood requested copy protection; this was the main reason for RMP being mandated. The content has three modes: “copy once”, “copy free” and “copy never”. In “copy once” mode, a program can be stored on a hard disk recorder, but cannot be further copied; only moved to another copy-protected media—and this move operation will mark the content “copy one generation”, which is mandated to permanently prevent further copying. “Copy never” programming may only be timeshifted and cannot be permanently stored. In 2006, the Japanese government is evaluating using the Digital Transmission Content Protection (DTCP) 'Encryption plus Non-Assertion' mechanism, to allow making multiple copies of digital content between compliant devices.

[ "Digital broadcasting", "Broadcasting", "Digital television" ]
Parent Topic
Child Topic
    No Parent Topic