language-icon Old Web
English
Sign In

Stereocenter

In a molecule, a stereocenter is a particular instance of a stereogenic element that is geometrically a point. A stereocenter or stereogenic center is any point in a molecule, though not necessarily an atom, bearing groups, such that an interchanging of any two groups leads to a stereoisomer. The term stereocenter was introduced in 1984 by Kurt Mislow and Jay Siegel. A chiral center is a stereocenter consisting of an atom holding a set of ligands (atoms or groups of atoms) in a spatial arrangement which is not superimposable on its mirror image. The concept of a chiral center generalizes the concept of an asymmetric carbon atom (a carbon atom bonded to four different entities) such that an interchanging of any two groups gives rise to an enantiomer. In organic chemistry, a chiral center usually refers to a carbon, phosphorus, or sulfur atom, though it is also possible for other atoms to be chiral centers, especially in areas of organometallic and inorganic chemistry. In a molecule, a stereocenter is a particular instance of a stereogenic element that is geometrically a point. A stereocenter or stereogenic center is any point in a molecule, though not necessarily an atom, bearing groups, such that an interchanging of any two groups leads to a stereoisomer. The term stereocenter was introduced in 1984 by Kurt Mislow and Jay Siegel. A chiral center is a stereocenter consisting of an atom holding a set of ligands (atoms or groups of atoms) in a spatial arrangement which is not superimposable on its mirror image. The concept of a chiral center generalizes the concept of an asymmetric carbon atom (a carbon atom bonded to four different entities) such that an interchanging of any two groups gives rise to an enantiomer. In organic chemistry, a chiral center usually refers to a carbon, phosphorus, or sulfur atom, though it is also possible for other atoms to be chiral centers, especially in areas of organometallic and inorganic chemistry. A molecule can have multiple stereocenters, giving it many stereoisomers. In compounds whose stereoisomerism is due to tetrahedral stereogenic centers, the total number of hypothetically possible stereoisomers will not exceed 2n, where n is the number of tetrahedral stereocenters. However, this is an upper bound because molecules with symmetry frequently have fewer stereoisomers. Having two chiral centers may give a meso compound which is achiral. Certain configurations may not exist due to steric reasons. Cyclic compounds with chiral centers may not exhibit chirality due to the presence of a two-fold rotation axis. Planar chirality may also provide for chirality without having an actual chiral center present.

[ "Enantioselective synthesis", "Chirality (chemistry)", "Apoptolidinone", "Phorboxazole B", "Crotylsilane", "Nitraramine", "Isolysergol" ]
Parent Topic
Child Topic
    No Parent Topic