language-icon Old Web
English
Sign In

Industrial engineering

Industrial engineering is an engineering profession that is concerned with the optimization of complex processes, systems, or organizations by developing, improving and implementing integrated systems of people, money, knowledge, information, equipment, energy and materials. Industrial engineers use specialized knowledge and skills in the mathematical, physical, and social sciences, together with the principles and methods of engineering analysis and design, to specify, predict, and evaluate the results obtained from systems and processes. From these results, they are able to create new systems, processes or situations for the useful coordination of labour, materials and machines and also improve the quality and productivity of systems, physical or social. Depending on the sub-specialties involved, industrial engineering may also overlap with, operations research, systems engineering, manufacturing engineering, production engineering, management science, management engineering, financial engineering, ergonomics or human factors engineering, safety engineering, or others, depending on the viewpoint or motives of the user. Even though its underlying concepts overlap considerably with certain business-oriented disciplines, such as operations management, industrial engineering is a longstanding engineering discipline subject to (and eligible for) professional engineering licensure in most jurisdictions. There is a general consensus among historians that the roots of the industrial engineering profession date back to the Industrial Revolution. The technologies that helped mechanize traditional manual operations in the textile industry including the flying shuttle, the spinning jenny, and perhaps most importantly the steam engine generated economies of scale that made Mass production in centralized locations attractive for the first time. The concept of the production system had its genesis in the factories created by these innovations. Adam Smith's concepts of Division of Labour and the 'Invisible Hand' of capitalism introduced in his treatise 'The Wealth of Nations' motivated many of the technological innovators of the Industrial revolution to establish and implement factory systems. The efforts of James Watt and Matthew Boulton led to the first integrated machine manufacturing facility in the world, including the implementation of concepts such as cost control systems to reduce waste and increase productivity and the institution of skills training for craftsmen. Charles Babbage became associated with Industrial engineering because of the concepts he introduced in his book 'On the Economy of Machinery and Manufacturers' which he wrote as a result of his visits to factories in England and the United States in the early 1800s. The book includes subjects such as the time required to perform a specific task, the effects of subdividing tasks into smaller and less detailed elements, and the advantages to be gained from repetitive tasks. Eli Whitney and Simeon North proved the feasibility of the notion of Interchangeable parts in the manufacture of muskets and pistols for the US Government. Under this system, individual parts were mass-produced to tolerances to enable their use in any finished product. The result was a significant reduction in the need for skill from specialized workers, which eventually led to the industrial environment to be studied later. Frederick Taylor (1856 – 1915) is generally credited as being the father of the Industrial Engineering discipline. He earned a degree in mechanical engineering from Steven's University and earned several patents from his inventions. His books, Shop Management and The Principles of Scientific Management which were published in the early 1900s, were the beginning of Industrial Engineering. Improvements in work efficiency under his methods was based on improving work methods, developing of work standards, and reduction in time required to carry out the work. With an abiding faith in the scientific method, Taylor's contribution to 'Time Study' sought a high level of precision and predictability for manual tasks.

[ "Engineering", "Designing facility", "Eight Disciplines Problem Solving", "Predetermined motion time system", "Graphical Evaluation and Review Technique", "Theory of constraints" ]
Parent Topic
Child Topic
    No Parent Topic