language-icon Old Web
English
Sign In

Anaphase-promoting complex

Anaphase-promoting complex (also called the cyclosome or APC/C) is an E3 ubiquitin ligase that marks target cell cycle proteins for degradation by the 26S proteasome. The APC/C is a large complex of 11–13 subunit proteins, including a cullin (Apc2) and RING (Apc11) subunit much like SCF. Other parts of the APC/C still have unknown functions, but are highly conserved. Anaphase-promoting complex (also called the cyclosome or APC/C) is an E3 ubiquitin ligase that marks target cell cycle proteins for degradation by the 26S proteasome. The APC/C is a large complex of 11–13 subunit proteins, including a cullin (Apc2) and RING (Apc11) subunit much like SCF. Other parts of the APC/C still have unknown functions, but are highly conserved. It was the discovery of the APC/C (and SCF) and their key role in eukaryotic cell reproduction that established once and for all the importance of ubiquitin-mediated proteolysis in eukaryotic cell biology. Once perceived as a system exclusively involved in removing damaged protein from the cell, ubiquitination and subsequent protein degradation by the proteasome is now perceived as a universal regulatory mechanism for signal transduction whose importance approaches that of protein phosphorylation. In 2014, the APC/C was mapped in 3D at a resolution of less than a nanometre, which also uncovered its secondary structure. Researchers have claimed this finding could transform the understanding of cancer and reveal new binding sites for future cancer drugs. The APC/C's main function is to trigger the transition from metaphase to anaphase by tagging specific proteins for degradation. The three major targets for degradation by the APC/C are securin and S and M cyclins. Securin releases separase (a protease) after being degraded. The separase triggers the cleavage of cohesin, the protein complex that binds sister chromatids together. During metaphase, sister chromatid is linked by intact cohesin complexes. When securin undergoes ubiquitination by the APC/C and releases separase, which degrades cohesin, sister chromatids become free to move to opposite poles for anaphase. The APC/C also targets the mitotic cyclins for degradation, resulting in the inactivation of M-CDK (mitotic cyclin-dependent kinase) complexes, promoting exit from mitosis and cytokinesis. Unlike the SCF, activator subunits control the APC/C. Cdc20 and Cdh1 are the two activators of particular importance to the cell cycle. These proteins target the APC/C to specific sets of substrates at different times in the cell cycle, thus driving it forward. The APC/C also plays an integral role in maintenance of chromatin metabolism, particularly in G1 and G0, and plays a key role in phosphorylation of H3 through destruction of the aurora A kinase. The critical substrates of the APC/C appear to be securin and the B type cyclins. This is conserved between mammals and yeast. In fact, yeast are viable in the absence of the APC/C if the requirement for targeting these two substrates is eliminated. There is not a vast amount of extensive investigation on APC/C subunits, which serve mostly as adaptors. Studies of APC subunits are mainly conducted in yeast, and studies show that the majority of yeast APC subunits are also present in vertebrates, this suggests conservation across eukaryotes. Eleven core APC subunits have been found in vertebrates versus thirteen in yeast. Activator subunits bind to APC at varying stages of the cell-cycle to control it's ubiquitination activity, often by directing APC to target substrates destined for ubiquitination. Specificity of APC ligases are proposed to be controlled by incorporation of specificity factors into the ligase complex, instead of substrate phosphorylation. i.e.: The subunit, CDC20 allows APC to degrade substrates such as anaphase inhibitors (Pdsp1) at the beginning of anaphase, on the other hand when CDC20 is substituted for specificity factor Hct1, APC degrades a different set of substrates, particularly mitosis cyclins in late anaphase. Activators CDC20 and Cdh1 are of particular significance and are the most widely studied and familiar of the APC/C subunits. The catalytic core of the APC/C consists of the cullin subunit Apc2 and RING H2 domain subunit Apc11. These two subunits catalyze ubiquitination of substrates when the C-terminal domain of Apc2 forms a tight complex with Apc11. RING/APc11 binds to the E2-ubiquitin conjugate that catalyzes the transfer of ubiquitin to an active site in E2.In addition to the catalytic functionality, other core proteins of the APC are composed multiple repeat motifs with the main purpose of providing molecular scaffold support. These include Apc1, the largest subunit which contains 11 tandem repeats of 35–40 amino acid sequences, and Apc2, which contains three cullin repeats of approximately 130 amino acids total. The major motifs in APC subunits include tetratricopeptide (TPR) motifs and WD40 repeats 1. C-termini regions of CDC20 and Cdh1 have a WD40 domain that is suggested to form a binding platform that binds APC substrates, thus contributing to APCs ability to target these substrates, although the exact mechanism through which they increase APC activity is unknown. It is also suggested that variations in these WD40 domains result in varying substrate specificity, which is confirmed by recent results suggesting that different APC substrates can directly and specifically bind to Cdc20 and Cdh1/Hct1 Ultimately, the specificity differences are responsible for the timing of the destruction of several APC targets during mitosis. With CDC20 targeting a few major substrates at metaphase and Cdh1 targeting a broader range of substrates towards late mitosis and G1. Most notably, 4 subunits of yeast APC/C consist almost entirely of multiple repeats of the 34 amino acid tetratricopeptide residue (TPR) motif. These TPR subunits, Cdc16, Cdc27, Cdc23, and Apc5, mainly provide scaffolding and support to mediate other protein-protein interactions. Cdc27 and Cdc23 have been shown to support the binding of Cdc20 and Cdh1, as mutations in key residues of these subunits led to increased dissociation of the activators. Apc10/Doc1, has been shown to promote substrate binding by mediating their interactions with Cdh1 and Cdc20.

[ "Cell cycle", "Ubiquitin ligase", "Kinetochore", "Cell cycle checkpoint", "Spindle apparatus" ]
Parent Topic
Child Topic
    No Parent Topic