language-icon Old Web
English
Sign In

Halogen lamp

A halogen lamp, also known as a tungsten halogen, quartz-halogen or quartz iodine lamp, is an incandescent lamp consisting of a tungsten filament sealed into a compact transparent envelope that is filled with a mixture of an inert gas and a small amount of a halogen such as iodine or bromine. The combination of the halogen gas and the tungsten filament produces a halogen cycle chemical reaction which redeposits evaporated tungsten to the filament, increasing its life and maintaining the clarity of the envelope. For this to happen, a halogen lamp must be operated at a higher envelope temperature (250° C; 482° F) than a standard vacuum incandescent lamp of similar power and operating life; this also produces light with higher luminous efficacy and color temperature. The small size of halogen lamps permits their use in compact optical systems for projectors and illumination. The small glass envelope may be enclosed in a much larger outer glass bulb for a bigger package; the outer jacket will be at a much lower and safer temperature, and it also protects the hot bulb from harmful contamination and makes the bulb mechanically more similar to a conventional lamp that it might replace. A halogen lamp, also known as a tungsten halogen, quartz-halogen or quartz iodine lamp, is an incandescent lamp consisting of a tungsten filament sealed into a compact transparent envelope that is filled with a mixture of an inert gas and a small amount of a halogen such as iodine or bromine. The combination of the halogen gas and the tungsten filament produces a halogen cycle chemical reaction which redeposits evaporated tungsten to the filament, increasing its life and maintaining the clarity of the envelope. For this to happen, a halogen lamp must be operated at a higher envelope temperature (250° C; 482° F) than a standard vacuum incandescent lamp of similar power and operating life; this also produces light with higher luminous efficacy and color temperature. The small size of halogen lamps permits their use in compact optical systems for projectors and illumination. The small glass envelope may be enclosed in a much larger outer glass bulb for a bigger package; the outer jacket will be at a much lower and safer temperature, and it also protects the hot bulb from harmful contamination and makes the bulb mechanically more similar to a conventional lamp that it might replace. Standard and halogen incandescent bulbs are much less efficient than LED and compact fluorescent lamps, and have been banned in many jurisdictions because of this. A carbon filament lamp using chlorine to prevent darkening of the envelope was patented in 1882, and chlorine-filled 'NoVak' lamps were marketed in 1892. The use of iodine was proposed in a 1933 patent, which also described the cyclic redeposition of tungsten back onto the filament. In 1959, General Electric patented a practical lamp using iodine. In 2009, the EU began its phase-out of inefficient bulbs. The production and importation of directional mains-voltage halogen bulbs was banned on 1 September 2016 and non-directional halogen bulbs followed on 1 September 2018. Australia will ban halogen light bulbs from September 2020. In ordinary incandescent lamps, evaporated tungsten mostly deposits onto the inner surface of the bulb, causing the bulb to blacken and the filament to grow increasingly weak until it eventually breaks. The presence of the halogen, however, sets up a reversible chemical reaction cycle with this evaporated tungsten. The halogen cycle keeps the bulb clean and causes the light output to remain almost constant throughout the bulb's life. At moderate temperatures the halogen reacts with the evaporating tungsten, the halide formed being moved around in the inert gas filling. At some point, however, it will reach higher temperature regions within the bulb where it then dissociates, releasing tungsten back onto the filament and freeing the halogen to repeat the process. However, the overall bulb envelope temperature must be significantly higher than in conventional incandescent lamps for this reaction to succeed: it is only at temperatures of above 250 °C (482 °F) on the inside of the glass envelope that the halogen vapor can combine with the tungsten and return it to the filament rather than the tungsten becoming deposited on the glass. A 300 watt tubular halogen bulb operated at full power quickly reaches a temperature of about 540 °C (1,004 °F), while a 500 watt regular incandescent bulb operates at only 180 °C (356 °F) and a 75 watt regular incandescent at only 130 °C (266 °F). The bulb must be made of fused silica (quartz) or a high-melting-point glass (such as aluminosilicate glass). Since quartz is very strong, the gas pressure can be higher, which reduces the rate of evaporation of the filament, permitting it to run a higher temperature (and so luminous efficacy) for the same average life. The tungsten released in hotter regions does not generally redeposit where it came from, so the hotter parts of the filament eventually thin out and fail. Quartz iodine lamps, using elemental iodine, were the first commercial halogen lamps launched by GE in 1959. Quite soon, bromine was found to have advantages, but was not used in elemental form. Certain hydrocarbon bromine compounds gave good results. Regeneration of the filament is also possible with fluorine, but its chemical reactivity is so great that other parts of the lamp are attacked. The halogen is normally mixed with a noble gas, often krypton or xenon. The first lamps used only tungsten for filament supports, but some designs use molybdenum – an example being the molybdenum shield in the H4 twin filament headlight for the European Asymmetric Passing Beam. For a fixed power and life, the luminous efficacy of all incandescent lamps is greatest at a particular design voltage. Halogen lamps made for 12 to 24 volt operation have good light outputs, and the very compact filaments are particularly beneficial for optical control (see picture). The rangesof multifaceted reflector 'MR' lamps of 20–50 watts were originally conceived for the projection of 8 mm film, but are now widely used for display lighting and in the home. More recently, wider beam versions have become available designed for direct use on supply voltages of 120 or 230 V. Tungsten halogen lamps behave in a similar manner to other incandescent lamps when run on a different voltage. However the light output is reported as proportional to V 3 {displaystyle V^{3}} , and the luminous efficacy proportional to V 1.3 {displaystyle V^{1.3}} . The normal relationship regarding the lifetime is that it is proportional to V − 14 {displaystyle V^{-14}} . For example, a bulb operated at 5% higher than its design voltage would produce about 15% more light, and the luminous efficacy would be about 6.5% higher, but would be expected to have only half the rated life.

[ "Optoelectronics", "Electrical engineering", "Optics", "Composite material", "resistive opto isolator" ]
Parent Topic
Child Topic
    No Parent Topic