language-icon Old Web
English
Sign In

Life expectancy

Life expectancy, often abbreviated to LEB (for Life expectancy at birth), is a statistical measure of the average time an organism is expected to live, based on the year of its birth, its current age and other demographic factors including gender. The most commonly used measure of life expectancy is at birth, which can be defined in two ways. Cohort LEB is the mean length of life of an actual birth cohort (all individuals born a given year) and can be computed only for cohorts born many decades ago, so that all their members have died. Period LEB is the mean length of life of a hypothetical cohort assumed to be exposed, from birth through death, to the mortality rates observed at a given year. National LEB figures reported by statistical national agencies and international organizations are indeed estimates of period LEB. In the Bronze Age and the Iron Age, LEB was 26 years; the 2010 world LEB was 67.2 years. For recent years, LEB in Eswatini (Swaziland) is about 49, while LEB in Japan is about 83. The combination of high infant mortality and deaths in young adulthood from accidents, epidemics, plagues, wars, and childbirth, particularly before modern medicine was widely available, significantly lowers LEB. For example, a society with a LEB of 40 may have few people dying at precisely 40: most will die before 30 or after 55. In populations with high infant mortality rates, LEB is highly sensitive to the rate of death in the first few years of life. Because of this sensitivity to infant mortality, LEB can be subjected to gross misinterpretation, leading one to believe that a population with a low LEB will necessarily have a small proportion of older people. Another measure, such as life expectancy at age 5 (e5), can be used to exclude the effect of infant mortality to provide a simple measure of overall mortality rates other than in early childhood; in the hypothetical population above, life expectancy at 5 would be another 65. Aggregate population measures, such as the proportion of the population in various age groups, should also be used along individual-based measures like formal life expectancy when analyzing population structure and dynamics. However, pre-modern societies still had universally higher mortality rates and universally lower life expectancies at every age for both genders, and this example was relatively rare. In societies with life expectancies of 30, for instance, a 40 year remaining timespan at age 5 may not be uncommon, but a 60 year one was. Mathematically, life expectancy is the mean number of years of life remaining at a given age, assuming age-specific mortality rates remain at their most recently measured levels. It is denoted by e x {displaystyle e_{x}} , which means the mean number of subsequent years of life for someone now aged x {displaystyle x} , according to a particular mortality experience. Longevity, maximum lifespan, and life expectancy are not synonyms. Life expectancy is defined statistically as the mean number of years remaining for an individual or a group of people at a given age. Longevity refers to the characteristics of the relatively long life span of some members of a population. Maximum lifespan is the age at death for the longest-lived individual of a species. Moreover, because life expectancy is an average, a particular person may die many years before or many years after the 'expected' survival. The term 'maximum life span' has a quite different meaning and is more related to longevity. Life expectancy is also used in plant or animal ecology; life tables (also known as actuarial tables). The term life expectancy may also be used in the context of manufactured objects, but the related term shelf life is used for consumer products, and the terms 'mean time to breakdown' (MTTB) and 'mean time between failures' (MTBF) are used in engineering. Records of human lifespan above age 100 are highly susceptible to errors. For example, the previous world-record holder for human lifespan, Carrie White, was uncovered as a simple typographic error after more than two decades. Therefore, the capacity for equivalent hidden errors make maximum lifespan records highly dubious. The oldest confirmed recorded age for any human is 122 years, reached by Jeanne Calment who lived between 1875 and 1997. This is referred to as the 'maximum life span,' which is the upper boundary of life, the maximum number of years any human is known to have lived. A theoretical study shows that the maximum life expectancy at birth is limited by the human life characteristic value δ, which is around 104 years. According to a study by biologists Bryan G. Hughes and Siegfried Hekimi, there is no evidence for limit on human lifespan. However, this view has been questioned on the basis of error patterns. The following information is derived from the 1961 Encyclopædia Britannica and other sources, some with questionable accuracy. Unless otherwise stated, it represents estimates of the life expectancies of the world population as a whole. In many instances, life expectancy varied considerably according to class and gender. Life expectancy at birth takes account of infant mortality but not prenatal mortality. Life expectancy increases with age as the individual survives the higher mortality rates associated with childhood. For instance, the table above listed the life expectancy at birth among 13th-century English nobles at 30. Having survived until the age of 21, a male member of the English aristocracy in this period could expect to live:

[ "Diabetes mellitus", "Population", "Years of potential life lost", "Preston curve", "Compensation law of mortality", "Decreased life expectancy", "Compression of morbidity" ]
Parent Topic
Child Topic
    No Parent Topic