language-icon Old Web
English
Sign In

Probability interpretations

The word probability has been used in a variety of ways since it was first applied to the mathematical study of games of chance. Does probability measure the real, physical tendency of something to occur or is it a measure of how strongly one believes it will occur, or does it draw on both these elements? In answering such questions, mathematicians interpret the probability values of probability theory. There are two broad categories of probability interpretations which can be called 'physical' and 'evidential' probabilities. Physical probabilities, which are also called objective or frequency probabilities, are associated with random physical systems such as roulette wheels, rolling dice and radioactive atoms. In such systems, a given type of event (such as a die yielding a six) tends to occur at a persistent rate, or 'relative frequency', in a long run of trials. Physical probabilities either explain, or are invoked to explain, these stable frequencies. The two main kinds of theory of physical probability are frequentist accounts (such as those of Venn, Reichenbach and von Mises) and propensity accounts (such as those of Popper, Miller, Giere and Fetzer). Evidential probability, also called Bayesian probability, can be assigned to any statement whatsoever, even when no random process is involved, as a way to represent its subjective plausibility, or the degree to which the statement is supported by the available evidence. On most accounts, evidential probabilities are considered to be degrees of belief, defined in terms of dispositions to gamble at certain odds. The four main evidential interpretations are the classical (e.g. Laplace's) interpretation, the subjective interpretation (de Finetti and Savage), the epistemic or inductive interpretation (Ramsey, Cox) and the logical interpretation (Keynes and Carnap). There are also evidential interpretations of probability covering groups, which are often labelled as 'intersubjective' (proposed by Gillies and Rowbottom). Some interpretations of probability are associated with approaches to statistical inference, including theories of estimation and hypothesis testing. The physical interpretation, for example, is taken by followers of 'frequentist' statistical methods, such as Ronald Fisher, Jerzy Neyman and Egon Pearson. Statisticians of the opposing Bayesian school typically accept the existence and importance of physical probabilities, but also consider the calculation of evidential probabilities to be both valid and necessary in statistics. This article, however, focuses on the interpretations of probability rather than theories of statistical inference. The terminology of this topic is rather confusing, in part because probabilities are studied within a variety of academic fields. The word 'frequentist' is especially tricky. To philosophers it refers to a particular theory of physical probability, one that has more or less been abandoned. To scientists, on the other hand, 'frequentist probability' is just another name for physical (or objective) probability. Those who promote Bayesian inference view 'frequentist statistics' as an approach to statistical inference that recognises only physical probabilities. Also the word 'objective', as applied to probability, sometimes means exactly what 'physical' means here, but is also used of evidential probabilities that are fixed by rational constraints, such as logical and epistemic probabilities. The philosophy of probability presents problems chiefly in matters of epistemology and the uneasy interface between mathematical concepts and ordinary language as it is used by non-mathematicians.Probability theory is an established field of study in mathematics. It has its origins in correspondence discussing the mathematics of games of chance between Blaise Pascal and Pierre de Fermat in the seventeenth century, and was formalized and rendered axiomatic as a distinct branch of mathematics by Andrey Kolmogorov in the twentieth century. In axiomatic form, mathematical statements about probability theory carry the same sort of epistemological confidence within the philosophy of mathematics as are shared by other mathematical statements. The mathematical analysis originated in observations of the behaviour of game equipment such as playing cards and dice, which are designed specifically to introduce random and equalized elements; in mathematical terms, they are subjects of indifference. This is not the only way probabilistic statements are used in ordinary human language: when people say that 'it will probably rain', they typically do not mean that the outcome of rain versus not-rain is a random factor that the odds currently favor; instead, such statements are perhaps better understood as qualifying their expectation of rain with a degree of confidence. Likewise, when it is written that 'the most probable explanation' of the name of Ludlow, Massachusetts 'is that it was named after Roger Ludlow', what is meant here is not that Roger Ludlow is favored by a random factor, but rather that this is the most plausible explanation of the evidence, which admits other, less likely explanations. Thomas Bayes attempted to provide a logic that could handle varying degrees of confidence; as such, Bayesian probability is an attempt to recast the representation of probabilistic statements as an expression of the degree of confidence by which the beliefs they express are held.

[ "Imprecise probability", "Propensity probability", "Borel–Kolmogorov paradox", "Cox's theorem" ]
Parent Topic
Child Topic
    No Parent Topic