language-icon Old Web
English
Sign In

Pentaerythritol tetranitrate

Pentaerythritol tetranitrate (PETN), also known as PENT, PENTA, TEN, corpent, or penthrite (or—rarely and primarily in German—as nitropenta), is an explosive material. It is the nitrate ester of pentaerythritol, and is structurally very similar to nitroglycerin. Penta refers to the five carbon atoms of the neopentane skeleton. PETN is a powerful explosive material with a relative effectiveness factor of 1.66. When mixed with a plasticizer, PETN forms a plastic explosive. Along with RDX it is the main ingredient of Semtex. PETN is also used as a vasodilator drug to treat certain heart conditions, such as for management of angina. Pentaerythritol tetranitrate was first prepared and patented in 1894 by the explosives manufacturer Rheinisch-Westfälische Sprengstoff A.G. of Cologne, Germany. The production of PETN started in 1912, when the improved method of production was patented by the German government. PETN was used by the German Military in World War I. It was also used in the MG FF/M autocannons and many other weapon systems of the Luftwaffe in World War II, specifically in the high explosive Minengeschoß shell. PETN is practically insoluble in water (0.01 g/100 ml at 50 °C), weakly soluble in common nonpolar solvents such as aliphatic hydrocarbons (like gasoline) or tetrachloromethane, but soluble in some other organic solvents, particularly in acetone (about 15 g/100 g of the solution at 20 °C, 55 g/100 g at 60 °C) and dimethylformamide (40 g/100 g of the solution at 40 °C, 70 g/100 g at 70 °C). PETN forms eutectic mixtures with some liquid or molten aromatic nitro compounds, e.g. trinitrotoluene (TNT) or tetryl. Due to steric hindrance of the adjacent neopentyl-like moiety, PETN is resistant to attack by many chemical reagents; it does not hydrolyze in water at room temperature or in weaker alkaline aqueous solutions. Water at 100 °C or above causes hydrolysis to dinitrate; presence of 0.1% nitric acid accelerates the reaction. The chemical stability of PETN is of interest, because of the presence of PETN in aging weapons. A review has been published. Neutron radiation degrades PETN, producing carbon dioxide and some pentaerythritol dinitrate and trinitrate. Gamma radiation increases the thermal decomposition sensitivity of PETN, lowers melting point by few degrees Celsius, and causes swelling of the samples. Like other nitrate esters, the primary degradation mechanism is the loss of nitrogen dioxide; this reaction is autocatalytic. Studies were performed on thermal decomposition of PETN. In the environment, PETN undergoes biodegradation. Some bacteria denitrate PETN to trinitrate and then dinitrate, which is then further degraded. PETN has low volatility and low solubility in water, and therefore has low bioavailability for most organisms. Its toxicity is relatively low, and its transdermal absorption also seems to be low. It poses a threat for aquatic organisms. It can be degraded to pentaerythritol by iron. Production is by the reaction of pentaerythritol with concentrated nitric acid to form a precipitate which can be recrystallized from acetone to give processable crystals.

[ "Explosive material", "Pentaerythritol trinitrate", "Erythritol tetranitrate", "Mannitol hexanitrate", "Pentaerithrityl tetranitrate" ]
Parent Topic
Child Topic
    No Parent Topic