language-icon Old Web
English
Sign In

Mobile ad hoc network

A mobile ad hoc network (MANET), also known as wireless ad hoc network or ad hoc wireless network, is a continuously self-configuring, infrastructure-less network of mobile devices connected wirelessly. A mobile ad hoc network (MANET), also known as wireless ad hoc network or ad hoc wireless network, is a continuously self-configuring, infrastructure-less network of mobile devices connected wirelessly. Each device in a MANET is free to move independently in any direction, and will therefore change its links to other devices frequently. Each must forward traffic unrelated to its own use, and therefore be a router. The primary challenge in building a MANET is equipping each device to continuously maintain the information required to properly route traffic. Such networks may operate by themselves or may be connected to the larger Internet. They may contain one or multiple and different transceivers between nodes. This results in a highly dynamic, autonomous topology. MANETs are a kind of wireless ad hoc network (WANET) that usually has a routable networking environment on top of a Link Layer ad hoc network. MANETs consist of a peer-to-peer, self-forming, self-healing network. MANETs circa 2000–2015 typically communicate at radio frequencies (30 MHz – 5 GHz). The Packet Radio Network (PRNET) was a set of early, experimental mobile ad hoc networks whose technologies evolved over time. It was funded by the Advanced Research Projects Agency (ARPA). Major participants in the project included BBN Technologies, Hazeltine Corporation, Rockwell International's Collins division, and SRI International. The earliest MANET was called PRNET, the 'packet radio' network, and was sponsored by Defense Advanced Research Projects Agency (DARPA) in the early 1970s. Bolt, Beranek and Newman Inc. (BBN) and SRI International designed, built, and experimented with these earliest systems. Experimenters included Robert Kahn, Jerry Burchfiel, and Ray Tomlinson. Similar experiments took place in the amateur radio community with the x25 protocol. These early packet radio systems predated the Internet, and indeed were part of the motivation of the original Internet Protocol suite. Later DARPA experiments included the Survivable Radio Network (SURAN) project, which took place in the 1980s, and the Wireless Network after Next (WNaN) circa 2007-2014. The Near-term digital radio performed trials of networks including over 70 nodes in the late 1990s, and was later fielded in the United States Army. The growth of laptops and 802.11/Wi-Fi wireless networking have made MANETs a popular research topic since the mid-1990s. Many academic papers evaluate protocols and their abilities, assuming varying degrees of mobility within a bounded space, usually with all nodes within a few hops of each other. Different protocols are then evaluated based on measures such as the packet drop rate, the overhead introduced by the routing protocol, end-to-end packet delays, network throughput, ability to scale, etc. The obvious appeal of MANETs is that the network is decentralised and nodes/devices are mobile, that is to say there is no fixed infrastructure which provides the possibility for numerous applications in different areas such as environmental monitoring , , disaster relief – and military communications . Since the early 2000s interest in MANETs has greatly increased which, in part, is due to the fact mobility can improve network capacity, shown by Grossglauser and Tse along with the introduction of new technologies. One main advantage to a decentralised network is that they are typically more robust than centralised networks due to the multi-hop fashion in which information is relayed. For example, in the cellular network setting, a drop in coverage occurs if a base station stops working, however the chance of a single point of failure in a MANET is reduced significantly since the data can take multiple paths. Since the MANET architecture evolves with time it has the potential to resolve issues such asisolation/disconnection from the network. Further advantages of MANETS over networks with a fixed topology include flexibility (an ad hoc network can be created anywhere with mobile devices), scalability (you can easily add more nodes to the network) and lower administration costs (no need to build an infrastructure first). With these positives follow some obvious draw backs in network performance. With a time evolving network it is clear we should expect variations in network performance due to no fixed architecture (no fixed connections). Furthermore, since network topology determines interference and thus connectivity, the mobility pattern of devices within the network will impact on network performance, possibly resulting in data having to be resent a lot of times (increased delay) and finally allocation of network resources such as power remains unclear.Finally, finding a model that accurately represents human mobility whilst remaining mathematically tractable remains an open problem due to the large range of factors that influence it.Some typical models used include the random walk, random waypoint and levy flight models.

[ "Computer network", "Telecommunications", "Operating system", "Distributed computing", "Network packet", "Airborne Networking", "AmbientTalk", "Dynamic infrastructure", "mobility prediction", "byzantine attack" ]
Parent Topic
Child Topic
    No Parent Topic