language-icon Old Web
English
Sign In

Phenomenology (particle physics)

In physics, phenomenology is the application of theoretical physics to experimental data by making quantitative predictions based upon known theories. It is in contrast to experimentation in the scientific method, in which the goal of the experiment is to test a scientific hypothesis instead of making predictions. Phenomenology is related to the philosophical notion in that these predictions describe anticipated behaviors for the phenomena in reality. In physics, phenomenology is the application of theoretical physics to experimental data by making quantitative predictions based upon known theories. It is in contrast to experimentation in the scientific method, in which the goal of the experiment is to test a scientific hypothesis instead of making predictions. Phenomenology is related to the philosophical notion in that these predictions describe anticipated behaviors for the phenomena in reality. Phenomenology is commonly applied to the field of particle physics, where it forms a bridge between the mathematical models of theoretical physics (such as quantum field theories and theories of the structure of space-time) and the results of the high-energy particle experiments. It is sometimes used in other fields such as in condensed matter physics and plasma physics, when there are no existing theories for the observed experimental data. Within the well-tested and generally accepted Standard Model, phenomenology is the calculating of detailed predictions for experiments, usually at high precision (e.g., including radiative corrections).

[ "Physics beyond the Standard Model", "Standard Model", "Quantum mechanics", "Particle physics" ]
Parent Topic
Child Topic
    No Parent Topic