language-icon Old Web
English
Sign In

Bioinorganic chemistry

Bioinorganic chemistry is a field that examines the role of metals in biology. Bioinorganic chemistry includes the study of both natural phenomena such as the behavior of metalloproteins as well as artificially introduced metals, including those that are non-essential, in medicine and toxicology. Many biological processes such as respiration depend upon molecules that fall within the realm of inorganic chemistry. The discipline also includes the study of inorganic models or mimics that imitate the behaviour of metalloproteins. Bioinorganic chemistry is a field that examines the role of metals in biology. Bioinorganic chemistry includes the study of both natural phenomena such as the behavior of metalloproteins as well as artificially introduced metals, including those that are non-essential, in medicine and toxicology. Many biological processes such as respiration depend upon molecules that fall within the realm of inorganic chemistry. The discipline also includes the study of inorganic models or mimics that imitate the behaviour of metalloproteins. As a mix of biochemistry and inorganic chemistry, bioinorganic chemistry is important in elucidating the implications of electron-transfer proteins, substrate bindings and activation, atom and group transfer chemistry as well as metal properties in biological chemistry. About 99% of mammals' mass are the elements carbon, nitrogen, calcium, sodium, chlorine, potassium, hydrogen, phosphorus, oxygen and sulfur. The organic compounds (proteins, lipids and carbohydrates) contain the majority of the carbon and nitrogen and most of the oxygen and hydrogen is present as water. The entire collection of metal-containing biomolecules in a cell is called the metallome. Paul Ehrlich used organoarsenic (“arsenicals”) for the treatment of syphilis, demonstrating the relevance of metals, or at least metalloids, to medicine, that blossomed with Rosenberg’s discovery of the anti-cancer activity of cisplatin (cis-PtCl2(NH3)2). The first protein ever crystallized (see James B. Sumner) was urease, later shown to contain nickel at its active site. Vitamin B12, the cure for pernicious anemia was shown crystallographically by Dorothy Crowfoot Hodgkin to consist of a cobalt in a corrin macrocycle. The Watson-Crick structure for DNA demonstrated the key structural role played by phosphate-containing polymers.

[ "Ligand", "Biochemistry", "Stereochemistry", "Organic chemistry", "Metals in medicine" ]
Parent Topic
Child Topic
    No Parent Topic