language-icon Old Web
English
Sign In

CIECAM02

In colorimetry, CIECAM02 is the color appearance model published in 2002 by the International Commission on Illumination (CIE) Technical Committee 8-01 (Color Appearance Modelling for Color Management Systems) and the successor of CIECAM97s. In colorimetry, CIECAM02 is the color appearance model published in 2002 by the International Commission on Illumination (CIE) Technical Committee 8-01 (Color Appearance Modelling for Color Management Systems) and the successor of CIECAM97s. The two major parts of the model are its chromatic adaptation transform, CIECAT02, and its equations for calculating mathematical correlates for the six technically defined dimensions of color appearance: brightness (luminance), lightness, colorfulness, chroma, saturation, and hue. Brightness is the subjective appearance of how bright an object appears given its surroundings and how it is illuminated. Lightness is the subjective appearance of how light a color appears to be. Colorfulness is the degree of difference between a color and grey. Chroma is the colorfulness relative to the brightness of another color that appears white under similar viewing conditions. This allows for the fact that a surface of a given chroma displays increasing colorfulness as the level of illumination increases. Saturation is the colorfulness of a color relative to its own brightness. Hue is the degree to which a stimulus can be described as similar to or different from stimuli that are described as red, green, blue, and yellow, the so-called unique hues. The colors that make up an object’s appearance are best described in terms of lightness and chroma when talking about the colors that make up the object’s surface, and it in terms of brightness, saturation and colorfulness when talking about the light that is emitted by or reflected off the object. CIECAM02 takes for its input the tristimulus values of the stimulus, the tristimulus values of an adapting white point, adapting background, and surround luminance information, and whether or not observers are discounting the illuminant (color constancy is in effect). The model can be used to predict these appearance attributes or, with forward and reverse implementations for distinct viewing conditions, to compute corresponding colors. CIECAM02 is used in Windows Vista's Windows Color System. The inner circle is the stimulus, from which the tristimulus values should be measured in CIE XYZ using the 2° standard observer. The intermediate circle is the proximal field, extending out another 2°. The outer circle is the background, reaching out to 10°, from which the relative luminance (Yb) need be measured. If the proximal field is the same color as the background, the background is considered to be adjacent to the stimulus. Beyond the circles which comprise the display field (display area, viewing area) is the surround field (or peripheral area), which can be considered to be the entire room. The totality of the proximal field, background, and surround is called the adapting field (the field of view that supports adaptation—extends to the limit of vision). When referring to the literature, it is also useful to be aware of the difference between the terms adopted white point (the computational white point) and the adapted white point (the observer white point). The distinction may be important in mixed mode illumination, where psychophysical phenomena come into play. This is a subject of research. CIECAM02 defines three surround(ing)s – average, dim, and dark – with associated parameters defined here for reference in the rest of this article: For intermediate conditions, these values can be linearly interpolated.

[ "Color space", "Color balance", "Color model" ]
Parent Topic
Child Topic
    No Parent Topic