language-icon Old Web
English
Sign In

Relational theory

In physics and philosophy, a relational theory (or relationism) is a framework to understand reality or a physical system in such a way that the positions and other properties of objects are only meaningful relative to other objects. In a relational spacetime theory, space does not exist unless there are objects in it; nor does time exist without events. The relational view proposes that space is contained in objects and that an object represents within itself relationships to other objects. Space can be defined through the relations among the objects that it contains considering their variations through time. The alternative spatial theory is an absolute theory in which the space exists independently of any objects that can be immersed in it. In physics and philosophy, a relational theory (or relationism) is a framework to understand reality or a physical system in such a way that the positions and other properties of objects are only meaningful relative to other objects. In a relational spacetime theory, space does not exist unless there are objects in it; nor does time exist without events. The relational view proposes that space is contained in objects and that an object represents within itself relationships to other objects. Space can be defined through the relations among the objects that it contains considering their variations through time. The alternative spatial theory is an absolute theory in which the space exists independently of any objects that can be immersed in it. The relational point of view was advocated in physics by Gottfried Wilhelm Leibniz and Ernst Mach (in his Mach's principle). It was rejected by Isaac Newton in his successful description of classical physics. Although Albert Einstein was impressed by Mach's principle, he did not fully incorporate it into his general theory of relativity. Several attempts have been made to formulate a full Machian theory, but most physicists think that none have so far succeeded. For example, see Brans–Dicke theory. Relational quantum mechanics and a relational approach to quantum physics have been independently developed, in analogy with Einstein's special relativity of space and time. Relationist physicists such as John Baez and Carlo Rovelli have criticised the leading unified theory of gravity and quantum mechanics, string theory, as retaining absolute space. Some prefer a developing theory of gravity, loop quantum gravity for its 'backgroundlessness'. A recent synthesis of relational theory, called R-theory, continuing the work of the mathematical biologist Robert Rosen (who developed 'Relational Biology' and 'Relational Complexity' as theories of life () takes a position between the above views. Rosen's theory differed from other relational views in defining fundamental relations in nature (as opposed to merely epistemic relations we might discuss) as information transfers between natural systems and their organization (as expressed in models). R-theory extends the idea of organizational models to nature generally. As interpreted by R-theory, such 'modeling relations' describe reality in terms of information relations (encoding and decoding) between measurable existence (expressed as material states and established by efficient behavior) and implicate organization or identity (expressed as formal potential and established by final exemplar), thus capturing all four of Aristotle's causalities within nature (Aristotle defined final cause as immanent from outside of nature). Applied to space-time physics, it claims that space-time is real but established only in relation to existing events, as a formal cause or model for the location of events relative to each other; and in reverse a system of space-time events establishes a template for space-time. R-theory is thus a form of model-dependent realism. It claims to more closely follow the views of Mach, Leibniz, Wheeler and Bohm, suggesting that natural law itself is system-dependent. A number of independent lines of research depict the universe, including the social organization of living creatures which is of particular interest to humans, as systems, or networks, of relationships. Basic physics has assumed and characterized distinctive regimes of relationships. For common examples, gases, liquids and solids are characterized as systems of objects which have among them relationships of distinctive types. Gases contain elements which vary continuously in their spatial relationships as among themselves. In liquids component elements vary continuously as to angles as between themselves, but are restricted as to spatial dispersion. In solids both angles and distances are circumscribed. These systems of relationships, where relational states are relatively uniform, bounded and distinct from other relational states in their surroundings, are often characterized as phases of matter, as set out in Phase (matter). These examples are only a few of the sorts of relational regimes which can be identified, made notable by their relative simplicity and ubiquity in the universe. Such Relational systems, or regimes, can be seen as defined by reductions in degrees of freedom among the elements of the system. This diminution in degrees of freedom in relationships among elements is characterized as correlation. In the commonly observed transitions between phases of matter, or phase transitions, the progression of less ordered, or more random, to more ordered, or less random, systems is recognized as the result of correlational processes (e.g. gas to liquid, liquid to solid). In the reverse of this process, transitions from a more-ordered state to a less ordered state, as from ice to liquid water, are accompanied by the disruption of correlations.

[ "Quantum mechanics", "Social psychology", "Epistemology" ]
Parent Topic
Child Topic
    No Parent Topic