language-icon Old Web
English
Sign In

MIMO-OFDM

Multiple-input, multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) is the dominant air interface for 4G and 5G broadband wireless communications. It combines multiple-input, multiple-output (MIMO) technology, which multiplies capacity by transmitting different signals over multiple antennas, and orthogonal frequency-division multiplexing (OFDM), which divides a radio channel into a large number of closely spaced subchannels to provide more reliable communications at high speeds. Research conducted during the mid-1990s showed that while MIMO can be used with other popular air interfaces such as time-division multiple access (TDMA) and code-division multiple access (CDMA), the combination of MIMO and OFDM is most practical at higher data rates. Multiple-input, multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) is the dominant air interface for 4G and 5G broadband wireless communications. It combines multiple-input, multiple-output (MIMO) technology, which multiplies capacity by transmitting different signals over multiple antennas, and orthogonal frequency-division multiplexing (OFDM), which divides a radio channel into a large number of closely spaced subchannels to provide more reliable communications at high speeds. Research conducted during the mid-1990s showed that while MIMO can be used with other popular air interfaces such as time-division multiple access (TDMA) and code-division multiple access (CDMA), the combination of MIMO and OFDM is most practical at higher data rates. MIMO-OFDM is the foundation for most advanced wireless local area network (wireless LAN) and mobile broadband network standards because it achieves the greatest spectral efficiency and, therefore, delivers the highest capacity and data throughput. Greg Raleigh invented MIMO in 1996 when he showed that different data streams could be transmitted at the same time on the same frequency by taking advantage of the fact that signals transmitted through space bounce off objects (such as the ground) and take multiple paths to the receiver. That is, by using multiple antennas and precoding the data, different data streams could be sent over different paths. Raleigh suggested and later proved that the processing required by MIMO at higher speeds would be most manageable using OFDM modulation, because OFDM converts a high-speed data channel into a number of parallel lower-speed channels. In modern usage, the term 'MIMO' indicates more than just the presence of multiple transmit antennas (multiple input) and multiple receive antennas (multiple output). While multiple transmit antennas can be used for beamforming, and multiple receive antennas can be used for diversity, the word 'MIMO' refers to the simultaneous transmission of multiple signals (spatial multiplexing) to multiply spectral efficiency (capacity). Traditionally, radio engineers treated natural multipath propagation as an impairment to be mitigated. MIMO is the first radio technology that treats multipath propagation as a phenomenon to be exploited. MIMO multiplies the capacity of a radio link by transmitting multiple signals over multiple, co-located antennas. This is accomplished without the need for additional power or bandwidth. Space–time codes are employed to ensure that the signals transmitted over the different antennas are orthogonal to each other, making it easier for the receiver to distinguish one from another. Even when there is line of sight access between two stations, dual antenna polarization may be used to ensure that there is more than one robust path. OFDM enables reliable broadband communications by distributing user data across a number of closely spaced, narrowband subchannels. This arrangement makes it possible to eliminate the biggest obstacle to reliable broadband communications, intersymbol interference (ISI). ISI occurs when the overlap between consecutive symbols is large compared to the symbols’ duration. Normally, high data rates require shorter duration symbols, increasing the risk of ISI. By dividing a high-rate data stream into numerous low-rate data streams, OFDM enables longer duration symbols. A cyclic prefix (CP) may be inserted to create a (time) guard interval that prevents ISI entirely. If the guard interval is longer than the delay spread—the difference in delays experienced by symbols transmitted over the channel—then there will be no overlap between adjacent symbols and consequently no intersymbol interference. Though the CP slightly reduces spectral capacity by consuming a small percentage of the available bandwidth, the elimination of ISI makes it an exceedingly worthwhile tradeoff. A key advantage of OFDM is that fast Fourier transforms (FFTs) may be used to simplify implementation. Fourier transforms convert signals back and forth between the time domain and frequency domain. Consequently, Fourier transforms can exploit the fact that any complex waveform may be decomposed into a series of simple sinusoids. In signal processing applications, discrete Fourier transforms (DFTs) are used to operate on real-time signal samples. DFTs may be applied to composite OFDM signals, avoiding the need for the banks of oscillators and demodulators associated with individual subcarriers. Fast Fourier transforms are numerical algorithms used by computers to perform DFT calculations.

[ "Orthogonal frequency-division multiplexing", "MIMO", "code time division multiple access", "space time frequency", "space frequency coding", "Multi-frequency time division multiple access", "Evolution-Data Optimized" ]
Parent Topic
Child Topic
    No Parent Topic