Time-dependent density functional theory

Time-dependent density functional theory (TDDFT) is a quantum mechanical theory used in physics and chemistry to investigate the properties and dynamics of many-body systems in the presence of time-dependent potentials, such as electric or magnetic fields. The effect of such fields on molecules and solids can be studied with TDDFT to extract features like excitation energies, frequency-dependent response properties, and photoabsorption spectra. Time-dependent density functional theory (TDDFT) is a quantum mechanical theory used in physics and chemistry to investigate the properties and dynamics of many-body systems in the presence of time-dependent potentials, such as electric or magnetic fields. The effect of such fields on molecules and solids can be studied with TDDFT to extract features like excitation energies, frequency-dependent response properties, and photoabsorption spectra. TDDFT is an extension of density functional theory (DFT), and the conceptual and computational foundations are analogous – to show that the (time-dependent) wave function is equivalent to the (time-dependent) electronic density, and then to derive the effective potential of a fictitious non-interacting system which returns the same density as any given interacting system. The issue of constructing such a system is more complex for TDDFT, most notably because the time-dependent effective potential at any given instant depends on the value of the density at all previous times. Consequently, the development of time-dependent approximations for the implementation of TDDFT is behind that of DFT, with applications routinely ignoring this memory requirement. The formal foundation of TDDFT is the Runge-Gross (RG) theorem (1984) – the time-dependent analogue of the Hohenberg-Kohn (HK) theorem (1964). The RG theorem shows that, for a given initial wavefunction, there is a unique mapping between the time-dependent external potential of a system and its time-dependent density. This implies that the many-body wavefunction, depending upon 3N variables, is equivalent to the density, which depends upon only 3, and that all properties of a system can thus be determined from knowledge of the density alone. Unlike in DFT, there is no general minimization principle in time-dependent quantum mechanics. Consequently, the proof of the RG theorem is more involved than the HK theorem. Given the RG theorem, the next step in developing a computationally useful method is to determine the fictitious non-interacting system which has the same density as the physical (interacting) system of interest. As in DFT, this is called the (time-dependent) Kohn-Sham system. This system is formally found as the stationary point of an action functional defined in the Keldysh formalism. The most popular application of TDDFT is in the calculation of the energies of excited states of isolated systems and, less commonly, solids. Such calculations are based on the fact that the linear response function – that is, how the electron density changes when the external potential changes – has poles at the exact excitation energies of a system. Such calculations require, in addition to the exchange-correlation potential, the exchange-correlation kernel – the functional derivative of the exchange-correlation potential with respect to the density. The approach of Runge and Gross considers a single-component system in the presence of a time-dependent scalar field for which the Hamiltonian takes the form where T is the kinetic energy operator, W the electron-electron interaction, and Vext(t) the external potential which along with the number of electrons defines the system. Nominally, the external potential contains the electrons' interaction with the nuclei of the system. For non-trivial time-dependence, an additional explicitly time-dependent potential is present which can arise, for example, from a time-dependent electric or magnetic field. The many-body wavefunction evolves according to the time-dependent Schrödinger equation under a single initial condition,

[ "Molecule", "Density functional theory", "Excited state", "Orbital-free density functional theory" ]
Parent Topic
Child Topic
    No Parent Topic