language-icon Old Web
English
Sign In

Field flow fractionation

Field-flow fractionation, abbreviated FFF, is a separation technique where a field is applied to a fluid suspension or solution pumped through a long and narrow channel, perpendicular to the direction of flow, to cause separation of the particles present in the fluid, depending on their differing 'mobilities' under the force exerted by the field. It was invented and first reported by J. Calvin Giddings. The method of FFF is unique to other separation techniques due to the fact that it can separate materials over a wide colloidal size range while maintaining high resolution. Although FFF is an extremely versatile technique, there is no 'one size fits all' method for all applications. In field-flow fractionation the field can be asymmetrical flow through a semi-permeable membrane, gravitational, centrifugal, thermal-gradient, electrical, magnetic etc. In all cases, the separation mechanism is borne from differences in particle mobility (electrophoretic, when the field is a DC electric field causing a transverse electric current flow) under the forces of the field, in equilibrium with the forces of diffusion: an often-parabolic laminar-flow-velocity profile in the channel determines the velocity of a particular particle, based on its equilibrium position from the wall of the channel. The ratio of the velocity of a species of particle to the average velocity of the fluid is called the retention ratio.

[ "Flow (psychology)", "Fractionation", "Communication channel", "Asymmetric flow field flow fractionation", "Thermal Field-Flow Fractionation", "Electrical Field-Flow Fractionation", "Asymmetrical Flow Field-Flow Fractionation", "FFF system" ]
Parent Topic
Child Topic
    No Parent Topic