language-icon Old Web
English
Sign In

Bacillus thuringiensis

Bacillus thuringiensis (or Bt) is a Gram-positive, soil-dwelling bacterium, commonly used as a biological pesticide. B. thuringiensis also occurs naturally in the gut of caterpillars of various types of moths and butterflies, as well on leaf surfaces, aquatic environments, animal feces, insect-rich environments, and flour mills and grain-storage facilities. It has also been observed to parasitize other moths such as Cadra calidella—in laboratory experiments working with C. calidella, many of the moths were diseased due to this parasite. During sporulation, many Bt strains produce crystal proteins (proteinaceous inclusions), called δ-endotoxins, that have insecticidal action. This has led to their use as insecticides, and more recently to genetically modified crops using Bt genes, such as Bt corn. Many crystal-producing Bt strains, though, do not have insecticidal properties. The subspecies israelensis is commonly used for control of mosquitoes and of fungus gnats. B. thuringiensis was first discovered in 1901 by Japanese biologist Ishiwatari Shigetane (石渡 繁胤) in silkworms. He named it Bacillus sotto, using the Japanese word sottō (卒倒, ‘collapse’), here referring to bacillary paralysis.In 1911, German microbiologist Ernst Berliner independently rediscovered it when he isolated it as the cause of a disease called Schlaffsucht in flour moth caterpillars in Thuringia (hence the specific name thuringiensis, 'Thuringian'). B. sotto would later be reassigned as B. thuringiensis var. sotto. In 1976, Robert A. Zakharyan reported the presence of a plasmid in a strain of B. thuringiensis and suggested the plasmid's involvement in endospore and crystal formation. B. thuringiensis is closely related to B. cereus, a soil bacterium, and B. anthracis, the cause of anthrax; the three organisms differ mainly in their plasmids.:34–35 Like other members of the genus, all three are aerobes capable of producing endospores. Tubulin was long thought to be specific to eukaryotes. More recently, however, several prokaryotic proteins have been shown to be related to tubulin. There are several dozen recognized subspecies of Bacillus thuringiensis. Subspecies commonly used as insecticides include Bacillus thuringiensis subspecies kurstaki (Btk), subspecies israelensis (Bti) and subspecies aizawa. Upon sporulation, B. thuringiensis forms crystals of proteinaceous insecticidal δ-endotoxins (called crystal proteins or Cry proteins), which are encoded by cry genes. In most strains of B. thuringiensis, the cry genes are located on a plasmid (cry is not a chromosomal gene in most strains). Cry toxins have specific activities against insect species of the orders Lepidoptera (moths and butterflies), Diptera (flies and mosquitoes), Coleoptera (beetles), Hymenoptera (wasps, bees, ants and sawflies) and against nematodes. Thus, B. thuringiensis serves as an important reservoir of Cry toxins for production of biological insecticides and insect-resistant genetically modified crops. When insects ingest toxin crystals, their alkaline digestive tracts denature the insoluble crystals, making them soluble and thus amenable to being cut with proteases found in the insect gut, which liberate the toxin from the crystal. The Cry toxin is then inserted into the insect gut cell membrane, paralyzing the digestive tract and forming a pore. The insect stops eating and starves to death; live Bt bacteria may also colonize the insect which can contribute to death. The midgut bacteria of susceptible larvae may be required for B. thuringiensis insecticidal activity.

[ "Botany", "Microbiology", "Gene", "Biotechnology", "Larva", "Asticcacaulis excentricus", "Streptomyces galbus", "Chrysomela tremulae", "Rhodococcus globerulus", "Bacillus thuringiensis israelensis" ]
Parent Topic
Child Topic
    No Parent Topic