language-icon Old Web
English
Sign In

Channel (geography)

In physical geography, a channel is a type of landform consisting of the outline of a path of relatively shallow and narrow body of fluid, most commonly the confine of a river, river delta or strait. The word is cognate to canal, and sometimes shows in this form, e.g. the Hood Canal. In physical geography, a channel is a type of landform consisting of the outline of a path of relatively shallow and narrow body of fluid, most commonly the confine of a river, river delta or strait. The word is cognate to canal, and sometimes shows in this form, e.g. the Hood Canal. Channel initiation refers to the site on a mountain slope where water begins to flow between identifiable banks. This site is referred to as the channel head and it marks an important boundary between hillslope processes and fluvial processes. The channel head is the most upslope part of a channel network and is defined by flowing water between defined identifiable banks. A channel head forms as overland flow and/or subsurface flow accumulate to a point where shear stress can overcome erosion resistance of the ground surface. Channel heads are often associated with colluvium, hollows and landslides. Overland flow is a primary factor in channel initiation where saturation overland flow deepens to increase shear stress and begin channel incision. Overland flows converge in topographical depressions where channel initiation begins. Soil composition, vegetation, precipitation, and topography dictate the amount and rate of overland flow. The composition of a soil determines how quickly saturation occurs and cohesive strength retards the entrainment of material from overland flows. Vegetation slows infiltration rates during precipitation events and plant roots anchor soil on hillslopes. Subsurface flow destabilizes soil and resurfaces on hillslopes where channel heads are often formed. This often results in abrupt channel heads and landslides. Hollows form due to concentrated subsurface flows where concentrations of colluvium are in a constant flux.Channel heads associated with hollows in steep terrain frequently migrate up and down hillslopes depending on sediment supply and precipitation. Natural channels are formed by fluvial process and are found across the Earth. These are mostly formed by flowing water from the hydrological cycle, though can also be formed by other fluids such as flowing lava can form lava channels. Channels also describe the deeper course through a reef, sand bar, bay, or any shallow body of water. An example of a river running through a sand bar is the Columbia Bar—the mouth of the Columbia river. A stream channel is the physical confine of a stream (river) consisting of a bed and stream banks.Stream channels exist in a variety of geometries. Stream channel development is controlled by both water and sediment movement. There is a difference between low gradient streams (less than a couple of percent in gradient or slightly sloped) and high gradient streams (steeply sloped). A wide variety of stream channel types can be distinguished (e.g. braided rivers, wandering rivers, single-thread sinuous rivers etc.). During floods, water flow may exceed the capacity of the channel and flood waters will spill out of the channel and across the valley bottom, floodplain or drainage area. Examples of rivers that are trapped in their channels: Grand Canyon and Black Canyon of the Gunnison. In a larger nautical context, as a geographical place name, the term channel is another word for strait, which is defined as a relatively narrow body of water that connects two larger bodies of water. In this nautical context, the terms strait, channel, sound, and passage are synonymous and usually interchangeable. For example, in an archipelago, the water between islands is typically called a channel or passage. The English Channel is the strait between England and France. The channel form is described in terms of geometry (plan, cross-sections, profile) enclosed by the materials of its bed and banks. This form is under influence of two major forces: water discharge and sediment supply. For erodible channels the mutual dependence of its parameters may be qualitatively described by the Lane's Principle (also known as the Lane's relationship): the product of the sediment load and bed grain size is proportional to the product of discharge and channel slope.

[ "Sediment", "Communication channel", "Hydrology", "Cartography", "Geomorphology", "River bank failure", "River channel migration", "Alluvial river", "Thalweg", "Europa Island" ]
Parent Topic
Child Topic
    No Parent Topic