language-icon Old Web
English
Sign In

NMDA receptor

The N-methyl-D-aspartate receptor (also known as the NMDA receptor or NMDAR), is a glutamate receptor and ion channel protein found in nerve cells. The NMDA receptor is one of three types of ionotropic glutamate receptors. The other receptors are the AMPA and kainate receptors. It is activated when glutamate and glycine (or D-serine) bind to it, and when activated it allows positively charged ions to flow through the cell membrane. The NMDA receptor is very important for controlling synaptic plasticity and memory function. The N-methyl-D-aspartate receptor (also known as the NMDA receptor or NMDAR), is a glutamate receptor and ion channel protein found in nerve cells. The NMDA receptor is one of three types of ionotropic glutamate receptors. The other receptors are the AMPA and kainate receptors. It is activated when glutamate and glycine (or D-serine) bind to it, and when activated it allows positively charged ions to flow through the cell membrane. The NMDA receptor is very important for controlling synaptic plasticity and memory function. The NMDAR is a specific type of ionotropic glutamate receptor. The NMDA receptor is so named because the agonist molecule N-methyl-D-aspartate (NMDA) binds selectively to it, and not to other glutamate receptors. Activation of NMDA receptors results in the opening of an ion channel that is nonselective to cations, with a combined reversal potential near 0 mV. While the opening and closing of the ion channel is primarily gated by ligand binding, the current flow through the ion channel is voltage dependent. Extracellular magnesium (Mg2+) and zinc (Zn2+) ions can bind to specific sites on the receptor, blocking the passage of other cations through the open ion channel. Depolarization of the cell dislodges and repels the Mg2+ and Zn2+ ions from the pore, thus allowing a voltage-dependent flow of sodium (Na+) and small amounts of calcium (Ca2+) ions into the cell and potassium (K+) out of the cell. Ca2+ flux through NMDARs is thought to be critical in synaptic plasticity, a cellular mechanism for learning and memory. The opening and closing (gating) of the NMDA receptor is complex. While it is primarily a ligand-gated channel, it does display weaker voltage-dependence modulation of the ligand-dependent gating. The ligand gating requires co-activation by two ligands: glutamate and either D-serine or glycine. The voltage-dependence of current through the channel is mainly due to binding of Mg2+ or Zn2+ ions to the protein as described above. The activity of the NMDA receptor is affected by many psychoactive drugs such as phencyclidine (PCP), alcohol (ethanol) and dextromethorphan (DXM). The anaesthetic and analgesic effects of the drugs ketamine and nitrous oxide are partially because of their effects on NMDA receptor activity. Since 1989 memantine has been recognized to be an uncompetitive antagonist of the N-methyl-D-aspartate receptor (NMDA receptor), entering the channel of the receptor after it has been activated and thereby blocking the flow of ions. The NMDA receptor channels play an important role in synaptic plasticity and synapse formation underlying memory, learning and formation of neural networks during development in the central nervous system (CNS). Overactivation of the receptor, causing excessive influx of Ca2+ can lead to excitotoxicity which is implied to be involved in some neurodegenerative disorders. Blocking of NMDA receptors could therefore, in theory, be useful in treating such diseases. However hypofunction of NMDA receptors (due to glutathione deficiency or other causes) may be involved in impairment of synaptic plasticity and could have other negative repercussions. The main problem with the utilization of NMDA receptor antagonists for neuroprotection is that the physiological actions of the NMDA receptor are essential for normal neuronal function. To be clinically accepted, successful clinical application of NMDA antagonists would need to block excessive activation without interfering with normal functions. The discovery of NMDA receptors was followed by the synthesis and study of N-Methyl-D-aspartic acid (NMDA) in the 1960s by Jeff Watkins and colleagues. In the early 1980s, NMDA receptors were shown to be involved in several central synaptic pathways. Receptor subunit selectivity was discovered in the early 1990s, which led to recognition of a new class of compounds that selectively inhibit the NR2B subunit. These findings led to vigorous campaign in the pharmaceutical industry. From this it was considered that NMDA receptors were associated with a variety of neurological disorders such as epilepsy, Parkinson's, Alzheimer's, Huntington's and other CNS disorders. A fortuitous finding was made in 1968 when a woman was taking amantadine as flu medicine and experienced remarkable remission of her Parkinson's symptoms. This finding, reported by Scawab et al., was the beginning of medicinal chemistry of adamantane derivatives in the context of diseases affecting the CNS. Before this finding, memantine, another adamantane derivative, had been synthesized by Eli Lilly and Company in 1963. The purpose was to develop a hypoglycemic drug, but it showed no such efficacy. It was not until 1972 that a possible therapeutic importance of memantine for treating neurodegenerative disorders was discovered. From 1989 memantine has been recognized to be an uncompetitive antagonist of the NMDA receptor. The NMDA receptor is a glutamate and ion channel protein receptor that is activated when glycine and glutamate bind to it. The receptor is a heteromeric complex that interacts with multiple intracellular proteins by three different subunits: NR1, NR2 and NR3. NR1 has eight different subunits generated by alternative splicing from a single gene. There are four different NR2 subunits (A-D) and late in the 20th century NR3A and NR3B subunits have been reported. Six separate genes encode for NR2 and NR3. All the subunits share a common membrane topology that is dominated by a large extracellular N-terminus, a membrane region comprising three transmembrane segments, a re-entrant pore loop, an extracellular loop between the transmembrane segments that are structurally not well known, and an intracellular C-terminus, which are different in size depending on the subunit and provide multiple sites of interaction with many intracellular proteins. Figure 1 shows a basic structure of NR1/NR2 subunits that forms the binding site for memantine, Mg2+ and ketamine.

[ "Receptor", "Argiotoxin", "Glutamate dehydrogenase 1", "PCP PSYCHOSIS", "NR2A NMDA receptor", "Conantokins" ]
Parent Topic
Child Topic
    No Parent Topic