language-icon Old Web
English
Sign In

Blood type

A blood type (also called a blood group) is a classification of blood, based on the presence and absence of antibodies and inherited antigenic substances on the surface of red blood cells (RBCs). These antigens may be proteins, carbohydrates, glycoproteins, or glycolipids, depending on the blood group system. Some of these antigens are also present on the surface of other types of cells of various tissues. Several of these red blood cell surface antigens can stem from one allele (or an alternative version of a gene) and collectively form a blood group system. Blood types are inherited and represent contributions from both parents. A total of 36 human blood group systems and 346 antigens are now recognized by the International Society of Blood Transfusion (ISBT). The two most important blood group systems are ABO and Rh; they determine someone's blood type (A, B, AB and O, with +, − or null denoting RhD status) for suitability in blood transfusion.The serum of healthy human beings not only agglutinates animal red cells, but also often those of human origin, from other individuals. It remains to be seen whether this appearance is related to inborn differences between individuals or it is the result of some damage of bacterial kind. A blood type (also called a blood group) is a classification of blood, based on the presence and absence of antibodies and inherited antigenic substances on the surface of red blood cells (RBCs). These antigens may be proteins, carbohydrates, glycoproteins, or glycolipids, depending on the blood group system. Some of these antigens are also present on the surface of other types of cells of various tissues. Several of these red blood cell surface antigens can stem from one allele (or an alternative version of a gene) and collectively form a blood group system. Blood types are inherited and represent contributions from both parents. A total of 36 human blood group systems and 346 antigens are now recognized by the International Society of Blood Transfusion (ISBT). The two most important blood group systems are ABO and Rh; they determine someone's blood type (A, B, AB and O, with +, − or null denoting RhD status) for suitability in blood transfusion. A complete blood type would describe a full set of 30substances on the surface of red blood cells, and an individual's blood type is one of many possible combinations of blood-group antigens. Across the 36 blood group systems, 308 different blood-group antigens have been found. Almost always, an individual has the same blood group for life, but very rarely an individual's blood type changes through addition or suppression of an antigen in infection, malignancy, or autoimmune disease. Another more common cause in blood type change is a bone marrow transplant. Bone-marrow transplants are performed for many leukemias and lymphomas, among other diseases. If a person receives bone marrow from someone who is a different ABO type (e.g., a type A patient receives a type O bone marrow), the patient's blood type will eventually convert to the donor's type. Some blood types are associated with inheritance of other diseases; for example, the Kell antigen is sometimes associated with McLeod syndrome. Certain blood types may affect susceptibility to infections, an example being the resistance to specific malaria species seen in individuals lacking the Duffy antigen. The Duffy antigen, presumably as a result of natural selection, is less common in racial groups from areas with a high incidence of malaria.

[ "Antigen", "Diabetes mellitus", "Genetics", "Internal medicine", "Immunology", "ABO hemolytic disease", "Forssman glycolipid synthase", "Antibody screens", "Blood type diet", "Isohemagglutinin" ]
Parent Topic
Child Topic
    No Parent Topic