language-icon Old Web
English
Sign In

Boolean function

In mathematics and logic, a (finitary) Boolean function (or switching function) is a function of the form ƒ : Bk → B, where B = {0, 1} is a Boolean domain and k is a non-negative integer called the arity of the function. In the case where k = 0, the 'function' is essentially a constant element of B. In mathematics and logic, a (finitary) Boolean function (or switching function) is a function of the form ƒ : Bk → B, where B = {0, 1} is a Boolean domain and k is a non-negative integer called the arity of the function. In the case where k = 0, the 'function' is essentially a constant element of B. Every k-ary Boolean function can be expressed as a propositional formula in k variables x1, …, xk, and two propositional formulas are logically equivalent if and only if they express the same Boolean function. There are 22k k-ary functions for every k. A function that can be utilized to evaluate any Boolean output in relation to its Boolean input by logical type of calculations. Such functions play a basic role in questions of complexity theory as well as the design of circuits and chips for digital computers. The properties of Boolean functions play a critical role in cryptography, particularly in the design of symmetric key algorithms (see substitution box). Boolean functions are often represented by sentences in propositional logic, and sometimes as multivariate polynomials over GF(2), but more efficient representations are binary decision diagrams (BDD), negation normal forms, and propositional directed acyclic graphs (PDAG). In cooperative game theory, monotone Boolean functions are called simple games (voting games); this notion is applied to solve problems in social choice theory.

[ "Algorithm", "Theoretical computer science", "Combinatorics", "Discrete mathematics", "Algebra", "Complexity index", "boolean space", "Boolean network", "Boolean circuit", "Two-element Boolean algebra" ]
Parent Topic
Child Topic
    No Parent Topic