language-icon Old Web
English
Sign In

Quantum foam

Quantum foam or spacetime foam is the fluctuation of spacetime on very small scales due to quantum mechanics. The idea was devised by John Wheeler in 1955. Quantum foam or spacetime foam is the fluctuation of spacetime on very small scales due to quantum mechanics. The idea was devised by John Wheeler in 1955. With an incomplete theory of quantum gravity, it is impossible to be certain what spacetime would look like at small scales. However, there is no reason that spacetime needs to be fundamentally smooth. It is possible that instead, in a quantum theory of gravity, spacetime would consist of many small, ever-changing regions in which space and time are not definite, but fluctuate in a foam-like manner. Wheeler suggested that the Heisenberg uncertainty principle might imply that over sufficiently small distances and sufficiently brief intervals of time, the 'very geometry of spacetime fluctuates'. These fluctuations could be large enough to cause significant departures from the smooth spacetime seen at macroscopic scales, giving spacetime a 'foamy' character. In 2009 the two MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) telescopes detected that among gamma-ray photons arriving from the blazar Markarian 501, some photons at different energy levels arrived at different times, suggesting that some of the photons had moved more slowly and thus contradicting the theory of general relativity's notion of the speed of light being constant, a discrepancy which could be explained by the irregularity of quantum foam. More recent experiments were, however, unable to confirm the supposed variation on the speed of light due to graininess of space. Other experiments involving the polarization of light from distant gamma ray bursts have also produced contradictory results. More Earth-based experiments are ongoing or proposed. The large fluctuations characteristic of a spacetime foam would be expected to occur on a length scale on the order of the Planck length. A foamy spacetime would have limits on the accuracy with which distances can be measured because the size of the many quantum bubbles through which light travels will fluctuate. Depending on the spacetime model used, the spacetime uncertainties accumulate at different rates as light travels through the vast distances. X-ray and gamma-ray observations of quasars used data from NASA’s Chandra X-ray Observatory, the Fermi Gamma-ray Space Telescope and ground-based gamma-ray observations from the Very Energetic Radiation Imaging Telescope Array (VERITAS) show that spacetime is uniform down to distances 1000 times smaller than the nucleus of a hydrogen atom. Observations of radiation from nearby quasars by Floyd Stecker of NASA's Goddard Space Flight Center have placed strong experimental limits on the possible violations of Einstein's special theory of relativity implied by the existence of quantum foam. Thus experimental evidence so far has given a range of values in which scientists can test for quantum foam.

[ "Open quantum system", "Planck scale", "Quantum gravity", "Quantization (physics)" ]
Parent Topic
Child Topic
    No Parent Topic