language-icon Old Web
English
Sign In

Social robot

A social robot is an autonomous robot that interacts and communicates with humans or other autonomous physical agents by following social behaviors and rules attached to its role. Like other robots, a social robot is physically embodied (avatars or on-screen synthetic social characters are not embodied and thus distinct). Some synthetic social agents are designed with a screen to represent the head or 'face' to dynamically communicate with users. In these cases, the status as a social robot depends on the form of the 'body' of the social agent; if the body has and uses some physical motors and sensor abilities, then the system could be considered a robot. A social robot is an autonomous robot that interacts and communicates with humans or other autonomous physical agents by following social behaviors and rules attached to its role. Like other robots, a social robot is physically embodied (avatars or on-screen synthetic social characters are not embodied and thus distinct). Some synthetic social agents are designed with a screen to represent the head or 'face' to dynamically communicate with users. In these cases, the status as a social robot depends on the form of the 'body' of the social agent; if the body has and uses some physical motors and sensor abilities, then the system could be considered a robot. While robots have often been described as possessing social qualities (see for example the tortoises developed by William Grey Walter in the 1950s), social robotics is a fairly recent branch of robotics. Since the early 1990s artificial intelligence and robotics researchers have developed robots which explicitly engage on a social level. Notable researchers include Cynthia Breazeal, Tony Belpaeme, Aude Billard, Kerstin Dautenhahn, Yiannis Demiris, Hiroshi Ishiguro, Maja Mataric, Javier Movellan, Brian Scassellati and Dean Weber. Also related is the Kansai engineering movement in Japanese science and technology --- for social robotics, see especially work by Takayuki Kanda, Hideki Kozima, Hiroshi Ishiguro, Micho Okada, Tomio Watanabe, and P. Ravindra S. De Silva. Designing an autonomous social robot is particularly challenging, as the robot needs to correctly interpret people's action and respond appropriately, which is currently not yet possible. Moreover, people interacting with a social robot may hold very high expectancies of its capabilities, based on science fiction representations of advanced social robots. As such, many social robots are partially or fully remote controlled to simulate advanced capabilities. This method of (often covertly) controlling a social robot is referred to as a Mechanical Turk or Wizard of Oz, after the character in the L. Frank Baum book. Wizard of Oz studies are useful in social robotics research to evaluate how people respond to social robots.

[ "Robot control" ]
Parent Topic
Child Topic
    No Parent Topic