language-icon Old Web
English
Sign In

Polar vortex

A polar vortex is an upper-level low-pressure area lying near one of the Earth's poles. There are two polar vortices in the Earth's atmosphere, overlying the North and South Poles. Each polar vortex is a persistent, large-scale, low-pressure zone less than 1,000 kilometers (620 miles) in diameter, that rotates counter-clockwise at the North Pole and clockwise at the South Pole (called a cyclone in both cases), i.e., both polar vortices rotate eastward around the poles. As with other cyclones, their rotation is driven by the Coriolis effect. The bases of the two polar vortices are located in the middle and upper troposphere and extend into the stratosphere. Beneath that lies a large mass of cold, dense Arctic air. A polar vortex is an upper-level low-pressure area lying near one of the Earth's poles. There are two polar vortices in the Earth's atmosphere, overlying the North and South Poles. Each polar vortex is a persistent, large-scale, low-pressure zone less than 1,000 kilometers (620 miles) in diameter, that rotates counter-clockwise at the North Pole and clockwise at the South Pole (called a cyclone in both cases), i.e., both polar vortices rotate eastward around the poles. As with other cyclones, their rotation is driven by the Coriolis effect. The bases of the two polar vortices are located in the middle and upper troposphere and extend into the stratosphere. Beneath that lies a large mass of cold, dense Arctic air. The interface between the cold dry air mass of the pole and the warm moist air mass farther south defines the location of the polar front. The polar front is centered, roughly at 60° latitude. A polar vortex strengthens in the winter and weakens in the summer because of its dependence on the temperature difference between the equator and the poles. The vortices weaken and strengthen from year to year. When the vortex of the Arctic is strong, it is well defined, there is a single vortex, and the Arctic air is well contained; when weaker, which it generally is, it will break into two or more vortices; when very weak, the flow of Arctic air becomes more disorganized, and masses of cold Arctic air can push equatorward, bringing with them a rapid and sharp temperature drop. When the polar vortex is strong, there is a single vortex with a jet stream that is 'well constrained' near the polar front. When the northern vortex weakens, it separates into two or more vortices, the strongest of which are near Baffin Island, Canada, and the other over northeast Siberia. The Antarctic vortex of the Southern Hemisphere is a single low-pressure zone that is found near the edge of the Ross ice shelf, near 160 west longitude. When the polar vortex is strong, the mid-latitude Westerlies (winds at the surface level between 30° and 60° latitude from the west) increase in strength and are persistent. When the polar vortex is weak, high-pressure zones of the mid-latitudes may push poleward, moving the polar vortex, jet stream, and polar front equatorward. The jet stream is seen to 'buckle' and deviate south. This rapidly brings cold dry air into contact with the warm, moist air of the mid-latitudes, resulting in a rapid and dramatic change of weather known as a 'cold snap'. Ozone depletion occurs within the polar vortices – particularly over the Southern Hemisphere – reaching a maximum depletion in the spring. The polar vortex was first described as early as 1853. The phenomenon's sudden stratospheric warming (SSW) develops during the winter in the Northern Hemisphere and was discovered in 1952 with radiosonde observations at altitudes higher than 20 km. The phenomenon was mentioned frequently in the news and weather media in the cold North American winter of 2013–2014, popularizing the term as an explanation of very cold temperatures. A deep freeze that gripped much of the United States and Canada in late January 2019 has been blamed on a polar vortex. The US National Weather Service warned that frostbite is possible within just 10 minutes of being outside in such extreme temperatures, and hundreds of schools, colleges and universities in the affected areas were closed. Around 21 people died in US due to severe frostbite. States within the midwest region of the United States had windchills just above -50°F (-45°C), which is colder than the frozen tundra and Antarctica. The Polar vortex has also thought to have had effects in Europe. For example, the 2013–14 United Kingdom winter floods were blamed on the Polar vortex bringing severe cold in the United States and Canada. Similarly, the severe, brutal cold in the United Kingdom in the winters of 2009/10 and 2010/11 were also blamed on the Polar vortex.

[ "Troposphere", "Vortex", "Stratosphere", "Polar", "Ozone", "Contour advection", "Sudden stratospheric warming", "Equivalent latitude", "Intermediate General Circulation Model" ]
Parent Topic
Child Topic
    No Parent Topic