language-icon Old Web
English
Sign In

Geotechnical engineering

Geotechnical engineering is the branch of civil engineering concerned with the engineering behavior of earth materials. Geotechnical engineering is important in civil engineering, but also has applications in military, mining, petroleum and other engineering disciplines that are concerned with construction occurring on the surface or within the ground. Geotechnical engineering uses principles of soil mechanics and rock mechanics to investigate subsurface conditions and materials; determine the relevant physical/mechanical and chemical properties of these materials; evaluate stability of natural slopes and man-made soil deposits; assess risks posed by site conditions; design earthworks and structure foundations; and monitor site conditions, earthwork and foundation construction. Geotechnical engineering is the branch of civil engineering concerned with the engineering behavior of earth materials. Geotechnical engineering is important in civil engineering, but also has applications in military, mining, petroleum and other engineering disciplines that are concerned with construction occurring on the surface or within the ground. Geotechnical engineering uses principles of soil mechanics and rock mechanics to investigate subsurface conditions and materials; determine the relevant physical/mechanical and chemical properties of these materials; evaluate stability of natural slopes and man-made soil deposits; assess risks posed by site conditions; design earthworks and structure foundations; and monitor site conditions, earthwork and foundation construction. A typical geotechnical engineering project begins with a review of project needs to define the required material properties. Then follows a site investigation of soil, rock, fault distribution and bedrock properties on and below an area of interest to determine their engineering properties including how they will interact with, on or in a proposed construction. Site investigations are needed to gain an understanding of the area in or on which the engineering will take place. Investigations can include the assessment of the risk to humans, property and the environment from natural hazards such as earthquakes, landslides, sinkholes, soil liquefaction, debris flows and rockfalls. A geotechnical engineer then determines and designs the type of foundations, earthworks, and/or pavement subgrades required for the intended man-made structures to be built. Foundations are designed and constructed for structures of various sizes such as high-rise buildings, bridges, medium to large commercial buildings, and smaller structures where the soil conditions do not allow code-based design. Foundations built for above-ground structures include shallow and deep foundations. Retaining structures include earth-filled dams and retaining walls. Earthworks include embankments, tunnels, dikes and levees, channels, reservoirs, deposition of hazardous waste and sanitary landfills. Geotechnical engineers are extensively involved in earthen and concrete dam projects, evaluating the subsurface conditions at the dam site and the side slopes of the reservoir, the seepage conditions under and around the dam and the stability of the dam under a range of normal and extreme loading conditions. Geotechnical engineering is also related to coastal and ocean engineering. Coastal engineering can involve the design and construction of wharves, marinas, and jetties. Ocean engineering can involve foundation and anchor systems for offshore structures such as oil platforms. The fields of geotechnical engineering and engineering geology are closely related, and have large areas of overlap. However, the field of geotechnical engineering is a specialty of engineering, where the field of engineering geology is a specialty of geology. Coming from the fields of engineering and science, respectively, the two may approach the same subject, such as soil classification, with different methods. Humans have historically used soil as a material for flood control, irrigation purposes, burial sites, building foundations, and as construction material for buildings. First activities were linked to irrigation and flood control, as demonstrated by traces of dykes, dams, and canals dating back to at least 2000 BCE that were found in ancient Egypt, ancient Mesopotamia and the Fertile Crescent, as well as around the early settlements of Mohenjo Daro and Harappa in the Indus valley. As the cities expanded, structures were erected supported by formalized foundations; Ancient Greeks notably constructed pad footings and strip-and-raft foundations. Until the 18th century, however, no theoretical basis for soil design had been developed and the discipline was more of an art than a science, relying on past experience. Several foundation-related engineering problems, such as the Leaning Tower of Pisa, prompted scientists to begin taking a more scientific-based approach to examining the subsurface. The earliest advances occurred in the development of earth pressure theories for the construction of retaining walls. Henri Gautier, a French Royal Engineer, recognized the 'natural slope' of different soils in 1717, an idea later known as the soil's angle of repose. A rudimentary soil classification system was also developed based on a material's unit weight, which is no longer considered a good indication of soil type. The application of the principles of mechanics to soils was documented as early as 1773 when Charles Coulomb (a physicist, engineer, and army Captain) developed improved methods to determine the earth pressures against military ramparts. Coulomb observed that, at failure, a distinct slip plane would form behind a sliding retaining wall and he suggested that the maximum shear stress on the slip plane, for design purposes, was the sum of the soil cohesion, c {displaystyle c} , and friction σ {displaystyle sigma ,!} tan ⁡ ( ϕ ) {displaystyle an(phi ,!)} , where σ {displaystyle sigma ,!} is the normal stress on the slip plane and ϕ {displaystyle phi ,!} is the friction angle of the soil. By combining Coulomb's theory with Christian Otto Mohr's 2D stress state, the theory became known as Mohr-Coulomb theory. Although it is now recognized that precise determination of cohesion is impossible because c {displaystyle c} is not a fundamental soil property, the Mohr-Coulomb theory is still used in practice today.

[ "Geology", "Engineering", "slope angle", "Wellbore", "Seismic refraction", "Connate fluids", "Geophysical imaging" ]
Parent Topic
Child Topic
    No Parent Topic