language-icon Old Web
English
Sign In

Aerodynamics

Aerodynamics, from Greek ἀήρ aer (air) + δυναμική (dynamics), is the study of motion of air, particularly as interaction with a solid object, such as an airplane wing. It is a sub-field of fluid dynamics and gas dynamics, and many aspects of aerodynamics theory are common to these fields. The term aerodynamics is often used synonymously with gas dynamics, the difference being that 'gas dynamics' applies to the study of the motion of all gases, and is not limited to air. The formal study of aerodynamics began in the modern sense in the eighteenth century, although observations of fundamental concepts such as aerodynamic drag were recorded much earlier. Most of the early efforts in aerodynamics were directed toward achieving heavier-than-air flight, which was first demonstrated by Otto Lilienthal in 1891. Since then, the use of aerodynamics through mathematical analysis, empirical approximations, wind tunnel experimentation, and computer simulations has formed a rational basis for the development of heavier-than-air flight and a number of other technologies. Recent work in aerodynamics has focused on issues related to compressible flow, turbulence, and boundary layers and has become increasingly computational in nature.General aerodynamics Aerodynamics, from Greek ἀήρ aer (air) + δυναμική (dynamics), is the study of motion of air, particularly as interaction with a solid object, such as an airplane wing. It is a sub-field of fluid dynamics and gas dynamics, and many aspects of aerodynamics theory are common to these fields. The term aerodynamics is often used synonymously with gas dynamics, the difference being that 'gas dynamics' applies to the study of the motion of all gases, and is not limited to air. The formal study of aerodynamics began in the modern sense in the eighteenth century, although observations of fundamental concepts such as aerodynamic drag were recorded much earlier. Most of the early efforts in aerodynamics were directed toward achieving heavier-than-air flight, which was first demonstrated by Otto Lilienthal in 1891. Since then, the use of aerodynamics through mathematical analysis, empirical approximations, wind tunnel experimentation, and computer simulations has formed a rational basis for the development of heavier-than-air flight and a number of other technologies. Recent work in aerodynamics has focused on issues related to compressible flow, turbulence, and boundary layers and has become increasingly computational in nature. Modern aerodynamics only dates back to the seventeenth century, but aerodynamic forces have been harnessed by humans for thousands of years in sailboats and windmills, and images and stories of flight appear throughout recorded history, such as the Ancient Greek legend of Icarus and Daedalus. Fundamental concepts of continuum, drag, and pressure gradients appear in the work of Aristotle and Archimedes. In 1726, Sir Isaac Newton became the first person to develop a theory of air resistance, making him one of the first aerodynamicists. Dutch-Swiss mathematician Daniel Bernoulli followed in 1738 with Hydrodynamica in which he described a fundamental relationship between pressure, density, and flow velocity for incompressible flow known today as Bernoulli's principle, which provides one method for calculating aerodynamic lift. In 1757, Leonhard Euler published the more general Euler equations which could be applied to both compressible and incompressible flows. The Euler equations were extended to incorporate the effects of viscosity in the first half of the 1800s, resulting in the Navier–Stokes equations. The Navier-Stokes equations are the most general governing equations of fluid flow and but are difficult to solve for the flow around all but the simplest of shapes. In 1799, Sir George Cayley became the first person to identify the four aerodynamic forces of flight (weight, lift, drag, and thrust), as well as the relationships between them, and in doing so outlined the path toward achieving heavier-than-air flight for the next century. In 1871, Francis Herbert Wenham constructed the first wind tunnel, allowing precise measurements of aerodynamic forces. Drag theories were developed by Jean le Rond d'Alembert, Gustav Kirchhoff, and Lord Rayleigh. In 1889, Charles Renard, a French aeronautical engineer, became the first person to reasonably predict the power needed for sustained flight. Otto Lilienthal, the first person to become highly successful with glider flights, was also the first to propose thin, curved airfoils that would produce high lift and low drag. Building on these developments as well as research carried out in their own wind tunnel, the Wright brothers flew the first powered airplane on December 17, 1903. During the time of the first flights, Frederick W. Lanchester, Martin Kutta, and Nikolai Zhukovsky independently created theories that connected circulation of a fluid flow to lift. Kutta and Zhukovsky went on to develop a two-dimensional wing theory. Expanding upon the work of Lanchester, Ludwig Prandtl is credited with developing the mathematics behind thin-airfoil and lifting-line theories as well as work with boundary layers. As aircraft speed increased, designers began to encounter challenges associated with air compressibility at speeds near or greater than the speed of sound. The differences in air flows under such conditions leads to problems in aircraft control, increased drag due to shock waves, and the threat of structural failure due to aeroelastic flutter. The ratio of the flow speed to the speed of sound was named the Mach number after Ernst Mach who was one of the first to investigate the properties of supersonic flow. William John Macquorn Rankine and Pierre Henri Hugoniot independently developed the theory for flow properties before and after a shock wave, while Jakob Ackeret led the initial work of calculating the lift and drag of supersonic airfoils. Theodore von Kármán and Hugh Latimer Dryden introduced the term transonic to describe flow speeds around Mach 1 where drag increases rapidly. This rapid increase in drag led aerodynamicists and aviators to disagree on whether supersonic flight was achievable until the sound barrier was broken for the first time in 1947 using the Bell X-1 aircraft. By the time the sound barrier was broken, aerodynamicists' understanding of the subsonic and low supersonic flow had matured. The Cold War prompted the design of an ever-evolving line of high performance aircraft. Computational fluid dynamics began as an effort to solve for flow properties around complex objects and has rapidly grown to the point where entire aircraft can be designed using computer software, with wind-tunnel tests followed by flight tests to confirm the computer predictions. Understanding of supersonic and hypersonic aerodynamics has matured since the 1960s, and the goals of aerodynamicists have shifted from the behavior of fluid flow to the engineering of a vehicle such that it interacts pedictably with the fluid flow. Designing aircraft for supersonic and hypersonic conditions, as well as the desire to improve the aerodynamic efficiency of current aircraft and propulsion systems, continues to motivate new research in aerodynamics, while work continues to be done on important problems in basic aerodynamic theory related to flow turbulence and the existence and uniqueness of analytical solutions to the Navier-Stokes equations. Understanding the motion of air around an object (often called a flow field) enables the calculation of forces and moments acting on the object. In many aerodynamics problems, the forces of interest are the fundamental forces of flight: lift, drag, thrust, and weight. Of these, lift and drag are aerodynamic forces, i.e. forces due to air flow over a solid body. Calculation of these quantities is often founded upon the assumption that the flow field behaves as a continuum. Continuum flow fields are characterized by properties such as flow velocity, pressure, density, and temperature, which may be functions of position and time. These properties may be directly or indirectly measured in aerodynamics experiments or calculated starting with the equations for conservation of mass, momentum, and energy in air flows. Density, flow velocity, and an additional property, viscosity, are used to classify flow fields.

[ "Control theory", "Flow (psychology)", "Thermodynamics", "Aerospace engineering", "Mechanics", "Phonation volume", "Flight dynamics", "Gurney flap", "flapping wing", "Transonic" ]
Parent Topic
Child Topic
    No Parent Topic