language-icon Old Web
English
Sign In

Waste heat

Waste heat is heat that is produced by a machine, or other process that uses energy, as a byproduct of doing work. All such processes give off some waste heat as a fundamental result of the laws of thermodynamics. Waste heat has lower utility (or in thermodynamics lexicon a lower exergy or higher entropy) than the original energy source. Sources of waste heat include all manner of human activities, natural systems, and all organisms, for example, a refrigerator warms the room air, an internal combustion engine generates high-temperature exhaust gases, and electronic components get warm when in operation. Waste heat is heat that is produced by a machine, or other process that uses energy, as a byproduct of doing work. All such processes give off some waste heat as a fundamental result of the laws of thermodynamics. Waste heat has lower utility (or in thermodynamics lexicon a lower exergy or higher entropy) than the original energy source. Sources of waste heat include all manner of human activities, natural systems, and all organisms, for example, a refrigerator warms the room air, an internal combustion engine generates high-temperature exhaust gases, and electronic components get warm when in operation. Instead of being 'wasted' by release into the ambient environment, sometimes waste heat (or cold) can be utilized by another process (such as using hot engine coolant to heat a vehicle), or a portion of heat that would otherwise be wasted can be reused in the same process if make-up heat is added to the system (as with heat recovery ventilation in a building). Thermal energy storage, which includes technologies both for short- and long-term retention of heat or cold, can create or improve the utility of waste heat (or cold). One example is waste heat from air conditioning machinery stored in a buffer tank to aid in night time heating. Another is seasonal thermal energy storage (STES) at a foundry in Sweden. The heat is stored in the bedrock surrounding a cluster of heat exchanger equipped boreholes, and is used for space heating in an adjacent factory as needed, even months later. An example of using STES to utilize natural waste heat is the Drake Landing Solar Community in Alberta, Canada, which, by using a cluster of boreholes in bedrock for interseasonal heat storage, obtains 97 percent of its year-round heat from solar thermal collectors on the garage roofs. Another STES application is storing winter cold underground, for summer air conditioning. On a biological scale, all organisms reject waste heat as part of their metabolic processes, and will die if the ambient temperature is too high to allow this. Anthropogenic waste heat is thought by some to contribute to the urban heat island effect. The biggest point sources of waste heat originate from machines (such as electrical generators or industrial processes, such as steel or glass production) and heat loss through building envelopes. The burning of transport fuels is a major contribution to waste heat. Machines converting energy contained in fuels to mechanical work or electric energy produce heat as a by-product. In the majority of energy applications, energy is required in multiple forms. These energy forms typically include some combination of: heating, ventilation, and air conditioning, mechanical energy and electric power. Often, these additional forms of energy are produced by a heat engine, running on a source of high-temperature heat. A heat engine can never have perfect efficiency, according to the second law of thermodynamics, therefore a heat engine will always produce a surplus of low-temperature heat. This is commonly referred to as waste heat or 'secondary heat', or 'low-grade heat'. This heat is useful for the majority of heating applications, however, it is sometimes not practical to transport heat energy over long distances, unlike electricity or fuel energy.The largest proportions of total waste heat are from power stations and vehicle engines. The largest single sources are power stations and industrial plants such as oil refineries and steelmaking plants. The electrical efficiency of thermal power plants is defined as the ratio between the input and output energy. It is typically only 33% when disregarding usefulness of the heat output for building heat.The images show cooling towers which allow power stations to maintain the low side of the temperature difference essential for conversion of heat differences to other forms of energy. Discarded or 'Waste' heat that is lost to the environment may instead be used to advantage. Industrial processes, such as oil refining, steel making or glass making are major sources of waste heat.

[ "Thermodynamics", "Heat exchanger", "Electrical engineering", "Waste management", "Copper in heat exchangers", "Organic Rankine cycle", "Thermal wheel", "EcoCute", "Hybrid heat" ]
Parent Topic
Child Topic
    No Parent Topic