language-icon Old Web
English
Sign In

Chemical kinetics

Chemical kinetics, also known as reaction kinetics, is the branch of physical chemistry that is concerned with understanding the rates of chemical reactions. It is to be contrasted with thermodynamics, which deals with the direction in which a process occurs but in itself tells nothing about its rate. Chemical kinetics includes investigations of how different experimental conditions can influence the speed of a chemical reaction and yield information about the reaction's mechanism and transition states, as well as the construction of mathematical models that also can describe the characteristics of a chemical reaction. In 1864, Peter Waage and Cato Guldberg pioneered the development of chemical kinetics by formulating the law of mass action, which states that the speed of a chemical reaction is proportional to the quantity of the reacting substances. Van 't Hoff studied chemical dynamics and in 1884 published his famous 'Études de dynamique chimique'. In 1901 he was awarded by the first Nobel Prize in Chemistry 'in recognition of the extraordinary services he has rendered by the discovery of the laws of chemical dynamics and osmotic pressure in solutions'. After van 't Hoff, chemical kinetics deals with the experimental determination of reaction rates from which rate laws and rate constants are derived. Relatively simple rate laws exist for zero order reactions (for which reaction rates are independent of concentration), first order reactions, and second order reactions, and can be derived for others. Elementary reactions follow the law of mass action, but the rate law of stepwise reactions has to be derived by combining the rate laws of the various elementary steps, and can become rather complex. In consecutive reactions, the rate-determining step often determines the kinetics. In consecutive first order reactions, a steady state approximation can simplify the rate law. The activation energy for a reaction is experimentally determined through the Arrhenius equation and the Eyring equation. The main factors that influence the reaction rate include: the physical state of the reactants, the concentrations of the reactants, the temperature at which the reaction occurs, and whether or not any catalysts are present in the reaction. Gorban and Yablonsky have suggested that the history of chemical dynamics can be divided into three eras. The first is the van 't Hoff wave searching for the general laws of chemical reactions and relating kinetics to thermodynamics. The second may be called the Semenov--Hinshelwood wave with emphasis on reaction mechanisms, especially for chain reactions. The third is associated with Aris and the detailed mathematical description of chemical reaction networks. The reaction rate varies depending upon what substances are reacting. Acid/base reactions, the formation of salts, and ion exchange are usually fast reactions. When covalent bond formation takes place between the molecules and when large molecules are formed, the reactions tend to be slower.

[ "Physical chemistry", "Kinetics", "Organic chemistry", "Inorganic chemistry", "chemical reaction kinetics", "In situ adaptive tabulation", "CHEMKIN", "Intrinsic low-dimensional manifold", "Chemical clock" ]
Parent Topic
Child Topic
    No Parent Topic