language-icon Old Web
English
Sign In

Solder paste

Solder paste (or solder cream) is a material used in the manufacture of printed circuit boards to connect surface mount components to pads on the board. It is also possible to solder through hole pin in paste components by printing solder paste in/over the holes. The paste initially adheres components in place by being sticky, it is then heated (along with the rest of the board) melting the paste and forming a mechanical bond as well as an electrical connection. The paste is applied to the board by jet printing, stencil printing or syringe and then the components are put in place by a pick-and-place machine or by hand. Solder paste (or solder cream) is a material used in the manufacture of printed circuit boards to connect surface mount components to pads on the board. It is also possible to solder through hole pin in paste components by printing solder paste in/over the holes. The paste initially adheres components in place by being sticky, it is then heated (along with the rest of the board) melting the paste and forming a mechanical bond as well as an electrical connection. The paste is applied to the board by jet printing, stencil printing or syringe and then the components are put in place by a pick-and-place machine or by hand. A majority of the defects in circuit-board assembly are caused due to issues in the solder-paste printing process or due to defects in the solder paste. There are many different types of defects possible, i.e. too much solder, or the solder melts and connects too many wires (bridging), resulting in a short circuit. Insufficient amounts of paste result in incomplete circuits. Head-in-pillow defects, or incomplete coalescence of ball grid array (BGA) sphere and solder paste deposit, is a failure mode that has seen increased frequency since the transition to lead-free soldering. Often missed during inspection, a head-in-pillow (HIP) defect appears like a head resting on a pillow with a visible separation in the solder joint at the interface of the BGA sphere and reflowed paste deposit. An electronics manufacturer needs experience with the printing process, specifically the paste characteristics, to avoid costly re-work on the assemblies. The paste's physical characteristics, like viscosity and flux levels, need to be monitored periodically by performing in-house tests. When making PCBs (printed circuit boards), manufacturers often test the solder paste deposits using SPI (solder paste inspection). SPI systems measure the volume of the solder pads before the components are applied and the solder melted. SPI systems can reduce the incidence of solder-related defects to statistically insignificant amounts. Inline systems are manufactured by various companies such as Sinic-Tek (China), Koh Young (Korea), GOEPEL electronic (Germany), CyberOptics (US), Parmi (Korea) and Test Research, Inc. (Taiwan). Offline systems are manufactured by various companies such as by VisionMaster, Inc. (US) and Sinic-Tek (China). A solder paste is essentially powder metal solder suspended in a thick medium called flux. Flux is added to act as a temporary adhesive, holding the components until the soldering process melts the solder and fuses the parts together. The paste is a gray, putty-like material. The composition of the solder paste varies, depending upon its intended use. For example, when soldering plastic component packages to an FR-4 glass epoxy circuit board, the solder compositions used are eutectic Sn-Pb (63 percent tin, 37 percent lead) or SAC alloys (tin/silver/copper, named for the elemental symbols Sn/Ag/Cu). If one needs high tensile and shear strength, tin-antimony (Sn/Sb) alloys might be used with such a board. Generally, solder pastes are made of a tin-lead alloy, with possibly a third metal alloyed, although environmental protection legislation is forcing a move to lead-free solder. Solder paste is thixotropic, meaning that its viscosity changes over time with applied shear force (e.g., stirring). The thixotropic index is a measure of the viscosity of the solder paste at rest, compared to 'worked' paste. Depending upon the formulation of the paste, it may be very important to stir the paste before it is used, to ensure that the viscosity is appropriate for proper application.

[ "Soldering", "Printed circuit board", "Desoldering", "Bead probe technology", "Solder form" ]
Parent Topic
Child Topic
    No Parent Topic