language-icon Old Web
English
Sign In

All-pass filter

An all-pass filter is a signal processing filter that passes all frequencies equally in gain, but changes the phase relationship among various frequencies. Most types of filter reduce the amplitude (i.e. the magnitude) of the signal applied to it for some values of frequency, whereas the all-pass filter allows all frequencies through without changes in level. An all-pass filter is a signal processing filter that passes all frequencies equally in gain, but changes the phase relationship among various frequencies. Most types of filter reduce the amplitude (i.e. the magnitude) of the signal applied to it for some values of frequency, whereas the all-pass filter allows all frequencies through without changes in level. A common application in electronic music production is in the design of an effects unit known as a 'phaser', where a number of all-pass filters are connected in sequence and the output mixed with the raw signal. It does this by varying its phase shift as a function of frequency. Generally, the filter is described by the frequency at which the phase shift crosses 90° (i.e., when the input and output signals go into quadrature – when there is a quarter wavelength of delay between them). They are generally used to compensate for other undesired phase shifts that arise in the system, or for mixing with an unshifted version of the original to implement a notch comb filter. They may also be used to convert a mixed phase filter into a minimum phase filter with an equivalent magnitude response or an unstable filter into a stable filter with an equivalent magnitude response. The operational amplifier circuit shown in adjacent figure implements a single-pole active all-pass filter that features a low-pass filter at the non-inverting input of the opamp. The filter's transfer function is given by: which has one pole at -1/RC and one zero at 1/RC (i.e., they are reflections of each other across the imaginary axis of the complex plane). The magnitude and phase of H(iω) for some angular frequency ω are The filter has unity-gain magnitude for all ω. The filter introduces a different delay at each frequency and reaches input-to-output quadrature at ω=1/RC (i.e., phase shift is 90°).

[ "Active filter", "Band-stop filter", "High-pass filter", "Optimum \"L\" filter", "Top-hat filter", "Sinc filter", "State variable filter", "biquadratic filter" ]
Parent Topic
Child Topic
    No Parent Topic