language-icon Old Web
English
Sign In

Quantum decoherence

Quantum decoherence is the loss of quantum coherence. In quantum mechanics, particles such as electrons are described by a wave function, a mathematical representation of the quantum state of a system; a probabilistic interpretation of the wave function is used to explain various quantum effects. As long as there exists a definite phase relation between different states, the system is said to be coherent. Coherence is preserved under the laws of quantum physics, and this is necessary for the functioning of quantum computers. If a quantum system is perfectly isolated, it would be impossible to manipulate or investigate it. If it is not perfectly isolated, for example during a measurement, coherence is shared with the environment and appears to be lost with time, a process called quantum decoherence. As a result of this process, quantum behavior is apparently lost, just as energy appears to be lost by friction in classical mechanics. Decoherence was first introduced in 1970 by the German physicist H. Dieter Zeh and has been a subject of active research since the 1980s. Decoherence has been developed into a complete framework, but it does not solve the measurement problem, as the founders of decoherence theory admit in their seminal papers. Decoherence can be viewed as the loss of information from a system into the environment (often modeled as a heat bath), since every system is loosely coupled with the energetic state of its surroundings. Viewed in isolation, the system's dynamics are non-unitary (although the combined system plus environment evolves in a unitary fashion). Thus the dynamics of the system alone are irreversible. As with any coupling, entanglements are generated between the system and environment. These have the effect of sharing quantum information with—or transferring it to—the surroundings. Decoherence has been used to understand the collapse of the wave function in quantum mechanics. Decoherence does not generate actual wave-function collapse. It only provides an explanation for apparent wave-function collapse, as the quantum nature of the system 'leaks' into the environment. That is, components of the wave function are decoupled from a coherent system and acquire phases from their immediate surroundings. A total superposition of the global or universal wavefunction still exists (and remains coherent at the global level), but its ultimate fate remains an interpretational issue. Specifically, decoherence does not attempt to explain the measurement problem. Rather, decoherence provides an explanation for the transition of the system to a mixture of states that seem to correspond to those states observers perceive. Moreover, our observation tells us that this mixture looks like a proper quantum ensemble in a measurement situation, as we observe that measurements lead to the 'realization' of precisely one state in the 'ensemble'. Decoherence represents a challenge for the practical realization of quantum computers, since such machines are expected to rely heavily on the undisturbed evolution of quantum coherences. Simply put, they require that coherent states be preserved and that decoherence is managed, in order to actually perform quantum computation. To examine how decoherence operates, an 'intuitive' model is presented. The model requires some familiarity with quantum theory basics. Analogies are made between visualisable classical phase spaces and Hilbert spaces. A more rigorous derivation in Dirac notation shows how decoherence destroys interference effects and the 'quantum nature' of systems. Next, the density matrix approach is presented for perspective. An N-particle system can be represented in non-relativistic quantum mechanics by a wave function ψ ( x 1 , x 2 , … , x N ) {displaystyle psi (x_{1},x_{2},dots ,x_{N})} , where each xi is a point in 3-dimensional space. This has analogies with the classical phase space. A classical phase space contains a real-valued function in 6N dimensions (each particle contributes 3 spatial coordinates and 3 momenta). Our 'quantum' phase space, on the other hand, involves a complex-valued function on a 3N-dimensional space. The position and momenta are represented by operators that do not commute, and ψ {displaystyle psi } lives in the mathematical structure of a Hilbert space. Aside from these differences, however, the rough analogy holds. Different previously isolated, non-interacting systems occupy different phase spaces. Alternatively we can say that they occupy different lower-dimensional subspaces in the phase space of the joint system. The effective dimensionality of a system's phase space is the number of degrees of freedom present, which—in non-relativistic models—is 6 times the number of a system's free particles. For a macroscopic system this will be a very large dimensionality. When two systems (and the environment would be a system) start to interact, though, their associated state vectors are no longer constrained to the subspaces. Instead the combined state vector time-evolves a path through the 'larger volume', whose dimensionality is the sum of the dimensions of the two subspaces. The extent to which two vectors interfere with each other is a measure of how 'close' they are to each other (formally, their overlap or Hilbert space multiplies together) in the phase space. When a system couples to an external environment, the dimensionality of, and hence 'volume' available to, the joint state vector increases enormously. Each environmental degree of freedom contributes an extra dimension.

[ "Quantum", "Wigner's friend", "Heisenberg cut", "decoherence time", "Dynamical decoupling", "Orchestrated objective reduction" ]
Parent Topic
Child Topic
    No Parent Topic