Polar organic chemical integrative sampler

A polar organic chemical integrative sampler (POCIS) is a passive sampling device which allows for the in situ collection of a time-integrated average of hydrophilic organic contaminants developed by researchers with the United States Geological Survey in Columbia, Missouri. POCIS provides a means for estimating the toxicological significance of waterborne contaminants. The POCIS sampler mimics the respiratory exposure of organisms living in the aquatic environment and can provide an understanding of bioavailable contaminants present in the system. POCIS can be deployed in a wide range of aquatic environments and is commonly used to assist in environmental monitoring studies. A polar organic chemical integrative sampler (POCIS) is a passive sampling device which allows for the in situ collection of a time-integrated average of hydrophilic organic contaminants developed by researchers with the United States Geological Survey in Columbia, Missouri. POCIS provides a means for estimating the toxicological significance of waterborne contaminants. The POCIS sampler mimics the respiratory exposure of organisms living in the aquatic environment and can provide an understanding of bioavailable contaminants present in the system. POCIS can be deployed in a wide range of aquatic environments and is commonly used to assist in environmental monitoring studies. The first passive sampling devices were developed in the 1970s to determine concentrations of contaminants in the air. In 1980 this technology was first adapted for the monitoring of organic contaminants in water. The initial type of passive sampler developed for aquatic monitoring purposes was the semipermeable membrane device (SMPD). SPMD samplers are most effective at absorbing hydrophobic pollutants with a log octanol-water partitioning coefficient (Kow) ranging from 4-8. As the global emission of bioconcentratable persistent organic pollutants (POPs) was shown to result in adverse ecological effects, industry developed a wide range of increasing water-soluble, polar hydrophilic organic compounds (HpOCs) to replace them. These compounds generally have lower bioconcentration factors. However, there is evidence that large fluxes of these HpOCs into aquatic environments may be responsible for a number of adverse effects to aquatic organisms, such as altered behavior, neurotoxicity, endocrine disruption, and impaired reproduction. In the late 1990s research was underway to develop a new passive sampler in order to monitor HpOCs with a log Kow value of less than 3. In 1999 the POCIS sampler was under development at the University of Missouri-Columbia. It gathered more support in the early 2000s as concern increased regarding the effects of pharmaceutical and personal care products in surface waters. The United States Geological Survey (USGS) has been heavily involved in the development of passive samplers and has articles in their database regarding the development of POCIS as early as 2000. The USGS Columbia Environmental Research Center (CERC) is a self-proclaimed international leader in the field of passive sampling. There have been recent efforts by the USGS to connect people who have an interest in passive sampling. An international workshop and symposium on passive sampling was held by the USGS in 2013 to connect developers, policy makers and end users in order to discuss ways of monitoring environmental pollution. The POCIS device was developed and patented by Jimmie D. Petty, James N. Huckins, and David A. Alvarez, of the Columbia Environmental Research Center. Integrative passive samplers are an effective way to monitor the concentration of organic contaminants in aquatic systems over time. Most aquatic monitoring programs rely on collecting individual samples, often called grab samples, at a specific time. The grab sampling method is associated with many disadvantages that can be resolved by passive sampling techniques. When contaminants are present in trace amounts, grab sampling may require the collection of large volumes of water. Also, lab analysis of the sample can only provide a snapshot of contaminant levels at the time of collection. This approach therefore has drawbacks when monitoring in environments where water contamination varies over time and episodic contamination events occur. Passive sampling techniques have been able to provide a time-integrated sample of water contamination with low detection limits and in situ extraction of analytes. The POCIS sampler consists of an array of sampling disks mounted on a support rod. Each disk consists of a solid sorbent sandwiched between two polyethersoulfone (PES) microporous membranes which are then compressed between two stainless steel rings which expose a sampling area. A standard POCIS disk consists of a sampling surface area to sorbent mass ratio of approximately 180 cm2g. Because the amount of chemical sampled is directly related to the sample surface area, it is sometimes necessary to combine extracts from multiple POCIS disks into one sample. Stainless steel rings, or other rigid inert material, are essential to prevent sorbent loss as the PES membranes are not able to be heat sealed. The POCIS array is then inserted and deployed within a protective canister. This canister is usually made of stainless steel or PVC and works to deflect debris that may displace the POCIS array during its deployment. The PES membrane acts as a semipermeable barrier between the sorbent and surrounding aquatic environment. It allows dissolved contaminants to pass through the sorbent while selectively excluding any particles larger than 100 nm. The membrane resists biofouling because the polyethersulphone used in the design is less prone than other materials. The POCIS is versatile in that the sorbents can be changed to target different classes of contaminants. However, only two sorbent classes are considered as standards of all POCIS deployments to date. Each POCIS disk will sample a certain volume of water per day. The volume of water sampled varies from chemical to chemical and is dependent on the physical and chemical properties of the compound as well as the duration of sampling. The sampling rate of POCIS can vary with changes in the water flow, turbulence, temperature, and the buildup of solids on the sampler’s surface. The accumulation of contaminants into a POCIS device is the result of three successive process occurring at the same time. First, the contaminants have to diffuse across the water boundary layer. The thickness of this layer is dependent on water flow and turbulence around the sampler and can significantly alter sampling rates. Second, the contaminant must transport across the membrane either through the water-filled pores or through the membrane itself. Finally, contaminants transfer from the membrane into the sorbent material mainly through adsorption. These last two steps make the modeling, understanding, and prediction of accumulation by a POCIS device challenging. To date, a limited number of chemical sampling rates have been determined. Accumulation of chemicals by a POCIS device generally follows first order kinetics. The kinetics are characterized by an initial integrative phase, followed by an equilibrium partitioning phase. During the integrative phase of uptake, a passive sampling device accumulates residues linearly relative to time, assuming constant exposure concentrations. Based on current results, the POCIS sampler remains in a linear phase for at least 30 days, and has been observed up to 56 days. Therefore, both laboratory and field data justify the use of a linear uptake model for the calculation of sample rates. In order to estimate the ambient water concentration of contaminants sampled by a POCIS device, there must be available calibration data applicable for in situ conditions regarding the target compound. Currently, this information is limited. POCIS can be deployed in a wide range of aquatic environments including stagnant pools, rivers, springs, estuarine systems, and wastewater streams. However, there has been little research into the use of POCIS in strictly marine environments. Prior to deployment of a POCIS device, it is essential to select a study site that will maximize the effectiveness of the sampler. Selecting an area that is shaded will help prevent light sensitive chemicals from being degrading. The site should also allow the sampler to be submerged in the water without being buried in the sediment. It is ideal to place the sampler in moving water in order to increase sampling rates, however, areas with an extremely turbulent water flow should be avoided as to prevent damage to the POCIS device. Passive samplers are very vulnerable to vandalism and it is therefore important to secure the sampler in areas that are not easily visible and that are away from areas frequently used by people.

[ "Polar", "Sampling (statistics)", "Wastewater", "Contamination", "Pesticide" ]
Parent Topic
Child Topic
    No Parent Topic