language-icon Old Web
English
Sign In

Nanotoxicology

Nanotoxicology is the study of the toxicity of nanomaterials. Because of quantum size effects and large surface area to volume ratio, nanomaterials have unique properties compared with their larger counterparts that affect their toxicity. Of the possible hazards, inhalation exposure appears to present the most concern, with animal studies showing pulmonary effects such as inflammation, fibrosis, and carcinogenicity for some nanomaterials. Skin contact and ingestion exposure are also a concern. Nanotoxicology is the study of the toxicity of nanomaterials. Because of quantum size effects and large surface area to volume ratio, nanomaterials have unique properties compared with their larger counterparts that affect their toxicity. Of the possible hazards, inhalation exposure appears to present the most concern, with animal studies showing pulmonary effects such as inflammation, fibrosis, and carcinogenicity for some nanomaterials. Skin contact and ingestion exposure are also a concern. Nanomaterials have at least one primary dimension of less than 100 nanometers, and often have properties different from those of their bulk components that are technologically useful. Because nanotechnology is a recent development, the health and safety effects of exposures to nanomaterials, and what levels of exposure may be acceptable, is not yet fully understood. Nanoparticles can be divided into combustion-derived nanoparticles (like diesel soot), manufactured nanoparticles like carbon nanotubes and naturally occurring nanoparticles from volcanic eruptions, atmospheric chemistry etc. Typical nanoparticles that have been studied are titanium dioxide, alumina, zinc oxide, carbon black, carbon nanotubes, and buckminsterfullerene. Nanotoxicology is a sub-specialty of particle toxicology. Nanomaterials appear to have toxicity effects that are unusual and not seen with larger particles. For example, even inert elements like gold become highly active at nanometer dimensions. Nanotoxicological studies are intended to determine whether and to what extent these properties may pose a threat to the environment and to human beings. Nanoparticles have much larger surface area to unit mass ratios which in some cases may lead to greater pro-inflammatory effects in, for example, lung tissue. In addition, some nanoparticles seem to be able to translocate from their site of deposition to distant sites such as the blood and the brain. Nanoparticles can be inhaled, swallowed, absorbed through skin and deliberately or accidentally injected during medical procedures. They might be accidentally or inadvertently released from materials implanted into living tissue. One study considers release of airborne engineered nanoparticles at workplaces, and associated worker exposure from various production and handling activities, to be very probable. Size is a key factor in determining the potential toxicity of a particle. However it is not the only important factor. Other properties of nanomaterials that influence toxicity include: chemical composition, shape, surface structure, surface charge, aggregation and solubility, and the presence or absence of functional groups of other chemicals. The large number of variables influencing toxicity means that it is difficult to generalise about health risks associated with exposure to nanomaterials – each new nanomaterial must be assessed individually and all material properties must be taken into account. Metal based nanoparticles (NPs) are a prominent class of NPs synthesized for their functions as semiconductors, electroluminescents, and thermoelectric materials. Biomedically, these antibacterial NPs have been utilized in drug delivery systems to access areas previously inaccessible to conventional medicine. With the recent increase in interest and development of nanotechnology, many studies have been performed to assess whether the unique characteristics of these NPs, namely their large surface area to volume ratio, might negatively impact the environment upon which they were introduced. Researchers have since found that many metal and metal oxide NPs have detrimental effects on the cells with which they come into contact including but not limited to DNA breakage and oxidation, mutations, reduced cell viability, warped morphology, induced apoptosis and necrosis, and decreased proliferation. The latest toxicology studies on mice as of 2013 involving exposure to carbon nanotubes (CNT) showed a limited pulmonary inflammatory potential of MWCNT at levels corresponding to the average inhalable elemental carbon concentrations observed in U.S.-based CNT facilities. The study estimated that considerable years of exposure are necessary for significant pathology to occur. One review concludes that the evidence gathered since the discovery of fullerenes overwhelmingly points to C60 being non-toxic. As is the case for toxicity profile with any chemical modification of a structural moiety, the authors suggest that individual molecules be assessed individually. Other classes of nanomaterials include polymers such as nanocellulose, and dendrimers.

[ "Toxicity", "Nanomaterials", "Nanoparticle", "Veterinary toxicology", "Nanoionics", "Industrial toxicology", "Endocrine toxicology", "Molecular Toxicology" ]
Parent Topic
Child Topic
    No Parent Topic