language-icon Old Web
English
Sign In

Phytoremediation

Phytoremediation /ˌfaɪtəʊrɪˌmiːdɪˈeɪʃən/ (from Ancient Greek φυτό (phyto), meaning 'plant', and Latin remedium, meaning 'restoring balance') refers to the technologies that use living plants to clean up soil, air, and water contaminated with hazardous contaminants. It is defined as 'the use of green plants and the associated microorganisms, along with proper soil amendments and agronomic techniques to either contain, remove or render toxic environmental contaminants harmless'. Phytoremediation /ˌfaɪtəʊrɪˌmiːdɪˈeɪʃən/ (from Ancient Greek φυτό (phyto), meaning 'plant', and Latin remedium, meaning 'restoring balance') refers to the technologies that use living plants to clean up soil, air, and water contaminated with hazardous contaminants. It is defined as 'the use of green plants and the associated microorganisms, along with proper soil amendments and agronomic techniques to either contain, remove or render toxic environmental contaminants harmless'. Phytoremediation is a cost-effective plant-based approach of remediation that takes advantage of the ability of plants to concentrate elements and compounds from the environment and to metabolize various molecules in their tissues. It refers to the natural ability of certain plants called hyperaccumulators to bioaccumulate, degrade, or render harmless contaminants in soils, water, or air. Toxic heavy metals and organic pollutants are the major targets for phytoremediation. Knowledge of the physiological and molecular mechanisms of phytoremediation began to emerge in recent years together with biological and engineering strategies designed to optimize and improve phytoremediation. In addition, several field trials confirmed the feasibility of using plants for environmental cleanup. Phytoremediation may be applied wherever the soil or static water environment has become polluted or is suffering ongoing chronic pollution. Examples where phytoremediation has been used successfully include the restoration of abandoned metal mine workings, and sites where polychlorinated biphenyls have been dumped during manufacture and mitigation of ongoing coal mine discharges reducing the impact of contaminants in soils, water, or air. Contaminants such as metals, pesticides, solvents, explosives, and crude oil and its derivatives, have been mitigated in phytoremediation projects worldwide. Many plants such as mustard plants, alpine pennycress, hemp, and pigweed have proven to be successful at hyperaccumulating contaminants at toxic waste sites. Not all plants are able to accumulate heavy metals or organics pollutants due to differences in the physiology of the plant. Even cultivars within the same species have varying abilities to accumulate pollutants.

[ "Soil water", "Heavy metals", "Contamination", "Potentilla griffithii", "Streptanthus polygaloides", "Sebertia acuminata", "Elsholtziaketone", "Rorippa globosa" ]
Parent Topic
Child Topic
    No Parent Topic