language-icon Old Web
English
Sign In

Distributed operating system

A distributed operating system is a software over a collection of independent, networked, communicating, and physically separate computational nodes.They handle jobs which are serviced by multiple CPUs. Each individual node holds a specific software subset of the global aggregate operating system. Each subset is a composite of two distinct service provisioners. The first is a ubiquitous minimal kernel, or microkernel, that directly controls that node's hardware. Second is a higher-level collection of system management components that coordinate the node's individual and collaborative activities. These components abstract microkernel functions and support user applications.Finally, the external devices could even include other full-scale computers employing the same digital language as the DYSEAC. For example, the SEAC or other computers similar to it could be harnessed to the DYSEAC and by use of coordinated programs could be made to work together in mutual cooperation on a common task… Consequently the computer can be used to coordinate the diverse activities of all the external devices into an effective ensemble operation.Each member of such an interconnected group of separate computers is free at any time to initiate and dispatch special control orders to any of its partners in the system. As a consequence, the supervisory control over the common task may initially be loosely distributed throughout the system and then temporarily concentrated in one computer, or even passed rapidly from one machine to the other as the need arises. …the various interruption facilities which have been described are based on mutual cooperation between the computer and the external devices subsidiary to it, and do not reflect merely a simple master-slave relationship.We wanted to present here the basic ideas of a distributed logic system with... the macroscopic concept of logical design, away from scanning, from searching, from addressing, and from counting, is equally important. We must, at all cost, free ourselves from the burdens of detailed local problems which only befit a machine low on the evolutionary scale of machines. A distributed operating system is a software over a collection of independent, networked, communicating, and physically separate computational nodes.They handle jobs which are serviced by multiple CPUs. Each individual node holds a specific software subset of the global aggregate operating system. Each subset is a composite of two distinct service provisioners. The first is a ubiquitous minimal kernel, or microkernel, that directly controls that node's hardware. Second is a higher-level collection of system management components that coordinate the node's individual and collaborative activities. These components abstract microkernel functions and support user applications. The microkernel and the management components collection work together. They support the system's goal of integrating multiple resources and processing functionality into an efficient and stable system. This seamless integration of individual nodes into a global system is referred to as transparency, or single system image; describing the illusion provided to users of the global system's appearance as a single computational entity. A distributed OS provides the essential services and functionality required of an OS but adds attributes and particular configurations to allow it to support additional requirements such as increased scale and availability. To a user, a distributed OS works in a manner similar to a single-node, monolithic operating system. That is, although it consists of multiple nodes, it appears to users and applications as a single-node. Separating minimal system-level functionality from additional user-level modular services provides a 'separation of mechanism and policy'. Mechanism and policy can be simply interpreted as 'what something is done' versus 'how something is done,' respectively. This separation increases flexibility and scalability. At each locale (typically a node), the kernel provides a minimally complete set of node-level utilities necessary for operating a node's underlying hardware and resources. These mechanisms include allocation, management, and disposition of a node's resources, processes, communication, and input/output management support functions. Within the kernel, the communications sub-system is of foremost importance for a distributed OS. In a distributed OS, the kernel often supports a minimal set of functions, including low-level address space management, thread management, and inter-process communication (IPC). A kernel of this design is referred to as a microkernel. Its modular nature enhances reliability and security, essential features for a distributed OS. It is common for a kernel to be identically replicated over all nodes in a system and therefore that the nodes in a system use similar hardware. The combination of minimal design and ubiquitous node coverage enhances the global system's extensibility, and the ability to dynamically introduce new nodes or services. System management components are software processes that define the node's policies. These components are the part of the OS outside the kernel. These components provide higher-level communication, process and resource management, reliability, performance and security. The components match the functions of a single-entity system, adding the transparency required in a distributed environment. The distributed nature of the OS requires additional services to support a node's responsibilities to the global system. In addition, the system management components accept the 'defensive' responsibilities of reliability, availability, and persistence. These responsibilities can conflict with each other. A consistent approach, balanced perspective, and a deep understanding of the overall system can assist in identifying diminishing returns. Separation of policy and mechanism mitigates such conflicts. The architecture and design of a distributed operating system must realize both individual node and global system goals. Architecture and design must be approached in a manner consistent with separating policy and mechanism. In doing so, a distributed operating system attempts to provide an efficient and reliable distributed computing framework allowing for an absolute minimal user awareness of the underlying command and control efforts.

[ "Real-time computing", "Operating system", "Distributed computing", "Programming language" ]
Parent Topic
Child Topic
    No Parent Topic