language-icon Old Web
English
Sign In

GiST

In computing, GiST or Generalized Search Tree, is a data structure and API that can be used to build a variety of disk-based search trees. GiST is a generalization of the B+ tree, providing a concurrent and recoverable height-balanced search tree infrastructure without making any assumptions about the type of data being stored, or the queries being serviced. GiST can be used to easily implement a range of well-known indexes, including B+ trees, R-trees, hB-trees, RD-trees, and many others; it also allows for easy development of specialized indexes for new data types. It cannot be used directly to implement non-height-balanced trees such as quad trees or prefix trees (tries), though like prefix trees it does support compression, including lossy compression. GiST can be used for any data type that can be naturally ordered into a hierarchy of supersets. Not only is it extensible in terms of data type support and tree layout, it allows the extension writer to support any query predicates that they choose. In computing, GiST or Generalized Search Tree, is a data structure and API that can be used to build a variety of disk-based search trees. GiST is a generalization of the B+ tree, providing a concurrent and recoverable height-balanced search tree infrastructure without making any assumptions about the type of data being stored, or the queries being serviced. GiST can be used to easily implement a range of well-known indexes, including B+ trees, R-trees, hB-trees, RD-trees, and many others; it also allows for easy development of specialized indexes for new data types. It cannot be used directly to implement non-height-balanced trees such as quad trees or prefix trees (tries), though like prefix trees it does support compression, including lossy compression. GiST can be used for any data type that can be naturally ordered into a hierarchy of supersets. Not only is it extensible in terms of data type support and tree layout, it allows the extension writer to support any query predicates that they choose. GiST is an example of software extensibility in the context of database systems: it allows the easy evolution of a database system to support new tree-based indexes. It achieves this by factoring out its core system infrastructure from a narrow API that is sufficient to capture the application-specific aspects of a wide variety of index designs. The GiST infrastructure code manages the layout of the index pages on disk, the algorithms for searching indexes and deleting from indexes, and complex transactional details such as page-level locking for high concurrency and write-ahead logging for crash recovery. This allows authors of new tree-based indexes to focus on implementing the novel features of the new index type — for example, the way in which subsets of the data should be described for search — without becoming experts in database system internals. Although originally designed for answering Boolean selection queries, GiST can also support nearest-neighbor search, and various forms of statistical approximation over large data sets. The most widely used GiST implementation is in the PostgreSQL relational database; it was also implemented in the Informix Universal Server, and as a standalone library, libgist.

[ "Database", "Surgery", "Pathology", "Programming language", "Stromal cell", "Fuzzy-trace theory", "gastro intestinal stromal tumor", "Gastrointestinal stromal tumours", "Stromal tumor", "Gastrointestinal stromal tumors (GISTs)" ]
Parent Topic
Child Topic
    No Parent Topic